Insecticidal activity of crude olive pomace oils from Kabylia (Algeria) against the infestation of Rhyzopertha dominica (F.) and Sitophilus oryzae (L.) in stored wheat grains


  • Safia Kerbel Laboratoire de Production et de Sauvegarde des Espèces menacées et des Récoltes. Influence des Variations Climatiques, Faculté des Sciences Biologiques et des Sciences Agronomiques, Université Mouloud Mammeri, Tizi-Ouzou, Algeria
  • H Azzi Laboratoire de Chimie Appliquée et Génie Chimique, Faculté des Sciences, Université Mouloud Mammeri, Tizi-Ouzou, Algérie
  • H Kadi Laboratoire de Chimie Appliquée et Génie Chimique, Faculté des Sciences, Université Mouloud Mammeri, Tizi-Ouzou, Algérie
  • H Fellag Laboratoire de Mathématiques Pures et Appliquées, Faculté des Sciences, Université Mouloud Mammeri, Tizi-Ouzou, Algérie
  • J-F Debras Unité Plantes et Systèmes de Cultures Horticoles, INRA, Avignon, France
  • A Kellouche Laboratoire de Production et de Sauvegarde des Espèces menacées et des Récoltes. Influence des Variations Climatiques, Faculté des Sciences Biologiques et des Sciences Agronomiques, Université Mouloud Mammeri, Tizi-Ouzou, Algeria



Valorisation, oil of olive cake, gas chromatography, contact toxicity, Triticum aestivum, Triticum turgidum, stored product pests


The insecticidal effect of four crude olive pomace oils extracted from pomace collected from four localities of Kabylia, refined olive pomace oil and extra virgin olive oil were assessed under laboratory conditions for the control of adults of Rhyzopertha dominica (Fabricius, 1792) (Coleoptera: Bostrychidae)) and Sitophilus oryzae (Linnaeus, 1763) (Coleoptera: Curculionidae). The doses used ranged from 0.1 to 0.4 ml/25 g of durum and soft wheat seeds. In addition, the quality indices and the fatty acid composition of these oils were evaluated. The results show that the legal quality indices were well within the legal limits for crude olive-pomace oil (COP), refined pomace oil (ROP) and extra-virgin olive oil (EVO) categories. The effectiveness of these vegetable oils is highly dependent on the insect species, the dose rate, the exposure time and the type of oil tested The main fatty acids from all samples tested, were oleic (61.89–79.25%), palmitic (8.34–15.71%) and linoleic (8.17–16.52%) acids. For both species and substrates tested, mortality is dose and time of exposure dependent. The highest dose (0.4 ml/25 g) causes ≥ 63.75% mortality, after 24 h of exposure. Comparison of LD50 (ml/25 g) indicates that olive oil was generally more toxic than crude and refined pomace oils, for both insects and substrates, values varies from 0.005 to 0.189. The most sensitive insect was S. oryzae for most vegetable oils tested. Likewise, oils significantly reduced the F1 offspring of both insects and seed weight losses. No progeny were observed in the two pests at the highest dose, and therefore no weight loss was recorded. The results also revealed that the six oils affect the germination capacity of durum and soft wheat seeds when the dosage is increased. The results collected remain encouraging for the recommendation of natural substances as part of integrated pest management programmes against insect pests of stored grains.



Download data is not yet available.


Abbott WS. 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology 18(2): 265–267.

Abdelli M, Moghrani H, Aboun A, Maachi R. 2016. Algerian Mentha pulegium L. leaves essential oil: chemical composition, antimicrobial, insecticidal and antioxidant activities. Industrial Crops and Products 94: 197–205.

Adak T, Barik N, Patil NB, Govindharaj GPP, Gadratagi BG, Annamalai M, Rath PC. 2020. Nanoemulsion of eucalyptus oil: an alternative to synthetic pesticides against two major storage insects (Sitophilus oryzae (L.) and Tribolium castaneum (Herbst) of rice. Industrial Crops and Products 133: 111849.

Aider FA, Kellouche A, Fellag H, Debras JF. 2016. Evaluation of the bio-insecticidal effects of the main fatty acids of olive oil on Callosobruchus maculatus F. (Coleoptera: Bruchidae) in cowpea (Vigna unguiculata) (L.). Journal of Plant Diseases and Protection 123(5): 235–245.

Aitken AD. 1975. Insect travellers, I: Coleoptera. Technical Bulletin 31. H.M.S.O, London, U.K. 190 pp.

Amarni F, Kadi H. 2010. Kinetics study of microwave-assisted solvent extraction of oil from olive cake using hexane: comparison with the conventional extraction. Innovation Food Science and Emerging Technologies 11(2): 322–327.

Arthur FH. 1996. Grain protectants: current status and prospects for future. Journal of Stored Products Research 32(4): 293–302.

Bellatreche A, Mnasri S, Ben Naceur M, Gaouar SSB. 2019. Study of the molecular biodiversity of the Saharan bread wheat in Algeria. Cereal Research Communications 47(4): 724–739.

Benbelkacem A, Kellou K. 2000. Évaluation du progrès génétique chez quelques variétés de blé dur (Triticum turgidum L. var. durum) cultivées en Algérie. In: Royo C, Nachit M, Di Fonzo N, Araus JL. (Eds) Durum Wheat Improvement in the Mediterranean Region: New Challenges. Ceheam, Zaragoza, Spain. (Options méditerranéens: Série A. Séminaires Méditerranéens; n. 40) .pp. 105–110.

Boyer S, Zhang H, Lempérière G. 2012. A review of control methods and resistance mechanisms in stored-product insects. Bulletin of Entomological Research 102(2): 213–229.

Braga-Caneppele MA, Caneppele C, Lázzari FA, Noemberg-Lázzari SM. 2003. Correlation between infestation level of Sitophilus zeamais Motschulsky, 1855 (Coleoptera: Curculionidae) and the quality factors of stored corn, Zea mays L. (Poaceae). Revista Brasileira de Entomologia 47: 625–630.

Chintzoglou GJ, Athanassiou CG, Markoglou AA, Kavallieratos NG. 2008. Influence of commodity on the effect of spinosad dust against Rhyzopertha dominica (F.) (Coleoptera: Bostrychidae) and Sitophilus oryzae (L.) (Coleoptera: Curculionidae). International Journal of Pest Management 54(4): 277–285.

Clemente A, Sanchez-Vioque R, Vioque J, Bautista J, Millan F. 1997. Chemical composition of extracted dried olive pomaces containing two and three phases. Food Biotechnology 11(3): 273–291.

Dagnelie P. 2012. Principes d’Expérimentation, Planification des Expériences et Analyses de leurs Résultats. 2nd ed. Gembloux, Belgique: Presses Agronomiques de Gembloux. 413 p.

Demissie G, Teshome A, Abakemal D, Tadesse A. 2008. Cooking oils and “Triplex” in the control of Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae) in farm-stored maize. Journal of Stored Products Research 44(2): 173–178.

Dermeche S, Nadour M, Larroche C, Moulti-Mati F, Michaud P. 2013. Olive mill wastes: biochemical characterisations and valorisation strategies. Process Biochemistry 48(10):1 532–1552.

Dey D, Sarup P. 1993. Feasibility of protecting maize varieties with oils to save losses in storage due to Sitophilus oryzae (Linn.). Journal of Entomological Research 17: 1–15.

Donahaye EJ. 2000. Current status of non-residual control methods against stored product pests. Crop Protection 19(8–10): 571–576.

Don-Pedro KN. 1989. Mechanism of action of some vegetable oils against Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae) on wheat. Journal of Stored Products Research 25(4):2 17–223.

EEC (European Economic Community). 2001. No. 1513/2001 of 23 July 2001 amending Regulations No. 136/66/EEC and EC No. 1638/98 as regards the extension of the period of validity of the aid scheme and the quality strategy for olive oil. Official Journal of the European Communities. L201:4–7.

Finney DJ. 1971. Probit Analysis. 3rd ed. London, U.K.: Cambridge University Press. 333 p.

Foscolou A, Critselis E, Panagiotakos D. 2018. Olive oil consumption and human health: A narrative review. Maturitas 118: 60–66.

Gomes T, Caponio F. 1997. Evaluation of the state of oxidation of crude olive-pomace oils. Influence of olive-pomace drying and oil extraction with solvent. Journal of Agriculture and Food Chemistry 45(4): 1381–1384.

Gomes T, Caponio F. 1998. Evaluation of the state of oxidation of olive-pomace oils: influence of the refining process. Journal of Agriculture and Food Chemistry 46(3): 1137–1142.

Gossen BD, Mcdonald MR. 2020. New technologies could enhance natural biological control and disease management and reduce reliance on synthetic pesticides. Canadian Journal of Plant Pathology 42(1): 30–40.

Gourgouta M, Rumbos CI, Athanassiou CG. 2019. Residual toxicity of a commercial cypermethrin formulation on grains against four major storage beetles/ Journal of Stored Products Research 83: 103–109.

Guettal S, Tine S, Hamaidia K, Tine-Djebbar F, Soltani N. 2021 Effect of Citrus limonum essential oil against granary weevil, Sitophilus granarius and its chemical composition, biological activities and energy reserves. International Journal of Tropical Insect Science 41(2): 1531–1541.

Guettal S, Tine S, Tine-Djebbar F, Soltani N. 2020. Evaluation of Citrus limonum (Sapindales: Rutaceae) L. essential oil as protectant against the granary weevil, Sitophilus granarius (L.) (Coleoptera: Curculionidae). Allelopathy Journal 51(1): 79–92.

Hill DS. 1990. Pests of Stored Products and their Control. London: Belhaven Press.

IOC [International Olive Council]. 2011. Guide for the determination of the characteristics of oil-olives. COI/OH/Doc. No: 1. COI/OH/ Doc. n°1, November 2011. IOC, Madrid, Spain. 34 pp.

Isman MB. 2006. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annual Review of Entomology 51(1): 45–66.

Ivbijaro MF, Ligan C, Youdeowei A. 1985. Control of rice weevils, Sitophilus oryzae (L.) in stored maize with vegetable oils. Agriculture, Ecosystem and Environment 14(3–4): 237–242.

Jilu VS, Borad PK, Patel RD. 2018. Evaluation of vegetable oils as grain protectants against Rhyzopertha dominica (Fabricius) on maize under storage condition. Journal of Entomology and Zoology Studies 6(3): 821–824.

Kellouche A, Soltani N. 2004. Activité biologique des poudres de cinq plantes et de l’huile essentielle d’une d’entre elles sur Callosobruchus maculatus (F.). International Journal of Tropical Insect Science 24(2): 184–191.

Kellouche A, Soltani N, Kreiter S, Auger J, Arnold I, Kreiter P. 2004. Biological activity of four vegetable oils on Callosobruchus maculatus (Fabricius) (Coleoptera: Bruchidae). Redia (Firenze). 87:39.

Kerbel S, Abdelli I, Azzi H, Debras J-F, Kellouche A. 2021. Fatty acid composition and biological activity of four olive oils from Kabylia (Algeria) against Rhyzopertha dominica (Coleoptera: Bostrychidae) infesting wheat seeds. Studia Universitatis Babeş-Bolyai, Biologia 66(1): 51–72.

Khalequzzaman M, Mahdi SHA, Goni OSHM. 2007. Efficacy of edible oils in the control of pulse beetle, Callosobruchus chinensis L. in stored pigeonpea. University Journal of Zoology, Rajshahi University 26: 89–92.

Khalique F, Ahmed K, Afzal M, Malik BA, Malik MR. 1988. Protection on stored chickpea, Cicer arietinum L. from attack of Callosobruchus chinensis L. (Coleoptera: Bruchidae). Tropical Pest Management 34(3): 333–334.

Khare BP, Johari RK. 1984. Influence of phenotypic characters of chickpea (Cicer arietinum L.) cultivars on their susceptibility to Callosobruchus chinensis (L.). Legume Research 7: 54–56.

Kher RH. 2006. Evaluation of vegetable oil and insecticides as grain protectants and varieties for susceptibility against Rhyzopertha dominica (F.) infesting wheat under storage condition. [Ph.D. thesis]. Department of Entomology, BA College of Agriculture, and Agricultural University, Anand, India.

Kmieciak S, Mecziane S, Kadi H, Moussaoui R. 1991. Oil extraction from olive foot cake with acidic hexane. Grasas y Aceites 42(1):46–50.

Kumar R, Okonronkwo NO. 1991. Effectiveness of plant oils against some Bostrychidae infesting cereals in storage. International Journal of Tropical Insect Science 12(1-2-3): 77–85.

Kumar D, Kalita P. 2017. Reducing postharvest losses during storage of grain crops to strengthen food security in developing countries. Foods 6 (1):8.

Lakhdari H, Ayad A. 2009. Les conséquences du changement climatique sur le développement de l’agriculture en Algérie: Quelles stratégies d’adaptation face à la rareté de l’eau? In: 5ème Colloque International: Énergie, Changements Climatiques et Développement Durable. 15–17. Hammamet, Tunisie.

Law-Ogbomo KE, Egharevba RKA. 2006. The use of vegetable oils in the control of Callosobruchus maculatus (F.) (Coleoptera: Bruchidae) in three cowpea varieties. Asian Journal of Plant Science 5(3): 547–552.

Lienard V, Seck D, Lognay G, Gaspar C, Severin M. 1993. Biological activity of Cassia occidentalis L. against Callosobruchus maculatus (F.) (Coleoptera: Bruchidae) (F.). Journal of Stored Product Research 29: 311–318.

Machekano H, Mvumi BM, Chinwada P, Kageler SJ, Rwafa R. Evaluation of alternatives to synthetic pesticides under small-scale farmer-managed grain storage conditions. Crop Prot. 2019;126:104941.

Mason LJ, Mcdonough M. 2012. Biology, behavior, and ecology of stored grain and legume insects. In: Hagstrum DW, Phillips TW, Cuperus G. (Eds) Stored Product Protection. Kansas State University, Manhattan, K.S., U.S.A. pp. 7–20.

Mateos R, Sarria B, Bravo L. 2019. Nutritional and other health properties of olive pomace oil. Critical Reviews in Food Science and Nutrition 60: 3506–3521.

McGaughey WH, Speirs RD, Martin CR. 1990. Susceptibility of classes of wheat grown in the United States to stored-grain insects. Journal of Economic Entomology 83(3): 1122–1127.

Meziane S, Kadi H. 2008. Kinetics and thermodynamics of oil extraction from olive cake. Journal of the American Oil Chemists Society. 85(4): 391–396.

Meziane S. 2013. Optimisation of oil extraction from olive pomace using response 487 surface methodology. Food Science and Technology International 19(4): 315–322.

Midega CAO, Murage AW, Pittchar JO, Khan ZR. 2016. Managing storage pests of maize: Farmers’ knowledge, perceptions and practices in western Kenya. Crop Protection 90: 142–149.

Nunes MA, Pawlowski S, Costa ASG, Alves RC, Oliveira MBPP, Velizarov S. 2019. Valorisation of olive pomace by a green integrated approach applying sustainable extraction and membrane-assisted concentration. Science of the Total Environment 652: 40–47.

Nikpay A. 2006. Efficacy of chamomile, sweet almond and coconut oils as post-harvest grain protectants of stored wheat against Rhyzopertha dominica (F.) (Coleoptera: bostrychidae). Journal of Stored Product Research 9(4): 369–373.

Obeng-Ofori D. 1995. Plant oils as grain protectants against infestations of Cryplolestes pusillus and Rhyzopertha dominica in stored grain. Entomologia Experimentalis et Applicata 77(2): 133–139.

Obeng-Ofori D. 2011. Protecting grain from insect pest infestations in Africa: producer perceptions and practices. Stewart Postharvest Reviews 7(3): 1–15.

Obeng-Ofori D, Amiteye S. 2005. Efficacy of mixing vegetable oils with pirimiphos-methyl against the maize weevil, Sitophilus zeamais Motschulsky in stored maize. Journal of Stored Product Research 41: 77–88.

Obeng-Ofori D, Reichmuth CH. 1999. Plant oils as potentiation agents of monoterpenes for protection of stored grains against damage by stored product beetle pests. International Journal of Pest Management 45(2): 155–159.

Pacheco IA, De Castro MFPPM, De Paula DC, Lourenzao AL, Bolonhezi S, Barbieri MK. 1995. Efficacy of soybean and castor oils in control of Callosobruchus maculatus (F.) and Callosobruchus phaseoli (Gyllenhal) in stored chickpeas (Cicer arietinum L.). Journal of Stored Product Research 31(3): 221–228.

Paloukas YZ, Agrafioti P, Rumbos CI, Schaffert S, Sterz T, Bozoglou C, Athanassiou CG. 2020. Evaluation of Carifend® for the control of stored-product beetles. Journal of Stored Product Research 85: 101534.

Phillips TW, Throne JE. 2010. Biorational approaches to managing stored product insects. Annual Review of Entomology 55(1): 375–397.

Rahman A, Talukder FA. 2006. Bioefficacy of some plant derivatives that protect grain against pulse beetle, Callosobruchus maculatus. Journal of Insect Science 6(3):1–10.[1:BOSPDT]2.0.CO;2.

Ramzan M. 1994. Efficacy of edible oils against pulse beetle, Callosobruchus maculatus. Journal of Insect Science 7(1): 37–39.

Ravindran R, Jaiswal AK. 2016. Exploitation of food industry waste for high-value products. Trends in Biotechnology 34(1): 58–69.

Ribeiro TB, Oliveira A, Coelho M, Veiga M, Costa EM, Silva S, Nunes J, Vicente AA, Pintado M. 2021. Are olive pomace powders a safe source of bioactives and nutrients? Journal of the Science of Food and Agriculture. .101(5):.1963–1978.

Saroj A, Oriyomi OV, Nayak AK, Haider SZ. 2020. Phytochemicals of plant-derived essential oils: A novel green approach against pests. Natural Remedies for Pest, Disease and Weed Control 6: 65–79.

Shaaya E, Kostjukovski M, Eilberg J, Sukprakarn C. 1997. Plant oils as fumigants and contact insecticides for the control of stored product insects. Journal of Stored Product Research 33(1): 7–15.

Sighamony S, Anees I, Chandrakala T, Osmani Z. 1986. Efficacy of certain indigenous plant products as grain protectants against Sitophilus oryzae (L.) and Rhyzopertha dominica (F.). Journal of Stored Product Research 22(1): 21–23.

Tembo E, Murfitt RFA. 1995. Effect of combining vegetable oil with pirimiphos-methyl for protection of stored wheat against Sitophilus granarius (L.). Journal of Stored Product Research 31(1):77–81.

Touchan R, Kherchouche D, Oudjehih B, Touchan H, Slimani S, Meko D. 2016. Dendroclimatology and wheat production in Algeria. Journal of Arid Environments 124: 102–110.

Tufail A, Adugna H, Ande E, Robel E, Selam H, Selam T. 2015. Eco-friendly approaches for management of bruchid beetle Callocsobruchus chinensis (Coleoptera: Bruchidae) infesting faba bean and cowpea under laboratory conditions. Journal of Stored Products and Postharvest Research 6(3): 25–29.

Udo IO, Harry GI. 2013. Effect of groundnut oil in protecting stored cowpea (Vigna unguiculata) from attack by cowpea weevil (Callosobruchus maculatus). Journal of Biology and Agriculture Health Care 3(1): 89–92.

Wahedi JA, Zakariya R, Danba EP, David DL, Mshelmbula BP, Buba U, Barau BW, Dauda UD, Bello H. 2015. Ethnobotanical studies of the efficacy of five oils at graded levels on adult Callosobruchus maculatus reared on cowpea. International Journal of Research and Review 2(8): 481–486.

Wale M, Assegie H. 2015. Efficacy of castor bean oil (Ricinus communis L.) against maize weevils (Sitophilus zeamais Mots.) in northwestern Ethiopia. Journal of Stored Product Research 63: 38–41.

Weaver DK, Subramanyam BH. 2000. Botanicals. In: Subramanyam BH, Hagstrum DW, (Eds). Alternatives to Pesticides in Stored-Product IPM. Dordrecht, The Netherlands: Kluwer Academic Publishers. Pp. 303–320.

Yanik DK. 2017. Alternative to traditional olive pomace oil extraction systems: microwave-assisted solvent extraction of oil from wet olive pomace. LWT – Food Science and Technology 7: 45–51.

Yangui T, Bouaziz M, Dhouib A, Sayadi S. 2009. Potential use of Tunisian Pituranthos chloranthus essential oil as a natural disinfectant. Letters in Applied Microbiology 48(1): 112–117.

Yuya AI, Tadesse A, Azerefegne F, Tefera T. 2009. Efficacy of combining Niger seed oil with malathion 5% dust formulation on maize against the maize weevil, Sitophilus zeamais (Coleoptera: Curculionidae). J Stored Prod Res.;45(1):67–70.




How to Cite

Kerbel S, Azzi H, Kadi H, Fellag H, Debras J-F, Kellouche A. Insecticidal activity of crude olive pomace oils from Kabylia (Algeria) against the infestation of Rhyzopertha dominica (F.) and Sitophilus oryzae (L.) in stored wheat grains. Afr. Entomol. [Internet]. 2024 Feb. 29 [cited 2024 Apr. 14];32. Available from: