Identification and virulence screening of fungal and bacterial entomophathogens of the edible long-horned grasshopper Ruspolia differens (Orthoptera: Tettigoniidae) from Uganda

Authors

  • Alfonce Leonard International Centre of Insect Physiology and Ecology, Nairobi, Kenya; Department of Agricultural Production, Makerere University, Kampala, Uganda; Tanzania Agricultural Research Institute (TARI)-Ukiriguru, Mwanza, Tanzania
  • James Peter Egonyu International Centre of Insect Physiology and Ecology https://orcid.org/0000-0001-6297-4765
  • Fathiya Khamis International Centre of Insect Physiology and Ecology, Nairobi, Kenya
  • Chrysantus Tanga International Centre of Insect Physiology and Ecology, Nairobi, Kenya
  • Sunday Ekesi International Centre of Insect Physiology and Ecology, Nairobi, Kenya
  • Samuel Kyamanywa 2Department of Agricultural Production, Makerere University, Kampala, Uganda
  • Sevgan Subramanian International Centre of Insect Physiology and Ecology, Nairobi, Kenya

DOI:

https://doi.org/10.17159/2254-8854/2023/a11581

Keywords:

mass rearing, molecular analysis , mortality, natural enemies , pathogenicity

Abstract

Natural enemies are major challenges in laboratory rearing of grasshoppers, but the identity and virulence of these towards the edible long-horned grasshopper Ruspolia differens (Serville) is scarcely known. In this study, fungi and bacteria were isolated from R. differens collected from Mbarara, Masaka, Hoima, Kampala and Kabale districts in Uganda in 2018, cultured on standard microbial media, identified using molecular techniques and screened for virulence against the insect in laboratory bioassays. Fourteen and nine species of fungi and bacteria were isolated from R. differens, respectively, with the number of isolates varying based on collection site. The most prevalent entomopathogenic fungal species were Aspergillus flavus Link (27.3%), Fusarium equiseti (Corda) (24.2%), Mucor fragilis Fresen (12.1%), Clonostachys rosea (Link) (6.0%) and Aspergillus tamarii Kita (6.0%); whereas the most prevalent bacterial isolates were Serratia marcescens Bizio (38.1%), Bacillus thuringiensis (Berliner) (14.3%) and Enterobacter cloacae (Jordan) (14.3%). Nine of the fungal species namely Clavispora lusitaniae Rodrigues de Miranda, Lichtheimia corymbifera (Cohn), Trichoderma koningii Oudem, F. equiseti, M. fragilis, Aspergillus niger van Tieghem, Epicoccum sorghinum (Saccardo), C. rosea, Penicillium commune Charles Thom; and five bacterial species (Proteus penneri Hickman, S. marcescens, B. thuringiensis, Staphylococcus sciuri Kloos and Enterococcus faecalis (Andrewes and Horder)) were ~5–7-fold and ~4–5-fold, more lethal to third instars of R. differens than untreated controls, respectively. This study is the first to report C. lusitaniae, Exserohilum mcginnis Padhye and Ajello, E. sorghinum, P. penneri and E. cloacae as insect pathogens. The results suggest a need to quarantine field collected R. differens before introducing them into the insectary, as well as performing antimicrobial practices during rearing of the insect to prevent entomopathogen-based mortality. 

Downloads

Download data is not yet available.

References

Agea JG, Biryomumaisho D, Buyinza M, Nabanoga GN. 2008. Commercialization of Ruspolia nitidula (nsenene grasshoppers) in central Uganda. African Journal of Food, Agriculture, Nutrition and Development 8(3): 319–332. https://doi.org/10.4314/ajfand.v8i3.19195

Bailey WJ, McCrae AWR. 1978. The general biology and phenology of swarming in the East African tettigoniid Ruspolia differens (Serville) (Orthoptera). Journal of Natural History 12(3): 259–288. https://doi.org/10.1080/00222937800770151

Bal J, Yun SH, Yeo SH, Kim JM, Kim DH. 2016. Metagenomic analysis of fungal diversity in Korean traditional wheat-based fermentation starter nuruk. Food Microbiology 60: 73–83. https://doi.org/10.1016/j.fm.2016.07.002

Balogun SA, Fagade OE. 2004. Entomopathogenic fungi in population of Zonocerus variegatus (L.) in Ibadan, south west, Nigeria. African Journal of Biotechnology 3(8): 382–386. https://doi.org/10.5897/AJB2004.000-2074

Bateman R, Carey M, Batt D, Prior C, Abraham Y, Moore D, Jenkins N, Fenlon J.1996. Screening for virulent isolates of entomopathogenic fungi against the desert locust, Schistocerca gregaria Forskål. Biocontrol Science and Technology 6(4): 549–560. https://doi.org/10.1080/09583159631181

Burgerjon A. 1956. Pulvérisation et poudrage au laboratoire par des préparations pathogènes insecticides. Ann Epiphyt 7: 675–683.

Castagnola A, Stock SP. 2014. Common virulence factors and tissue targets of entomopathogenic bacteria for biological control of lepidopteran pests. Insects 5(1): 139–166.

Christias CH, Hatzipapas P, Dara A, Kaliafas A, Chrysanthis G. 2001. Alternaria alternata, a new pathotype pathogenic to aphids. BioControl 46(1): 105–124. https://doi.org/10.1023/A:1009930112152

Cho EM, Boucias D, Keyhani NO. 2006. EST analysis of cDNA libraries from the entomopathogenic fungus Beauveria (Cordyceps) bassiana. II. Fungal cells sporulating on chitin and producing oosporein. Microbiology 152(9): 2855–2864.

De La Rosa W, Alatorre R, Barrera JF, Toriello C. 2000. Effect of Beauveria bassiana and Metarhizium anisopliae (Deuteromycetes) upon the coffee berry borer (Coleoptera: Scolytidae) under field conditions. Journal of Economic Entomology 93(5): 1409–1414. https://doi.org/10.1603/0022-0493-93.5.1409

Egonyu JP, Miti MM, Tanga CM, Leonard A. 2021. Cannibalism, oviposition and egg development in the edible long-horned grasshopper, Ruspolia differens (Orthoptera: Tettigoniidae) under laboratory conditions. Journal of Insects as Food and Feed 7(1): 89–97. https://doi.org/10.3920/JIFF2020.0018

Garrido-Jurado I, Valverde-García P, Quesada-Moraga E. 2011. Use of a multiple logistic regression model to determine the effects of soil moisture and temperature on the virulence of entomopathogenic fungi against pre-imaginal Mediterranean fruit fly Ceratitis capitata. Biological Control 59(3): 366–372. https://doi.org/10.1016/j.biocontrol.2011.09.011

Geiser M, Schweitzer S, Grimm C. 1986. The hypervariable region in the genes coding for entomopathogenic crystal proteins of Bacillus thuringiensis: nucleotide sequence of the kurhd1 gene of subsp. kurstaki HD1. Gene 48(1): 109–118. https://doi.org/10.1016/0378-1119(86)90357-4

Gonzalez F, Tkaczuk C, Dinu MM, Fiedler Ż, Vidal S, Zchori-Fein E, Messelink GJ. 2016. New opportunities for the integration of microorganisms into biological pest control systems in greenhouse crops. Journal of Pest Science 89(2): 295–311.

Grabowski NT, Klein G. 2017. Microbiology of processed edible insect products–Results of a preliminary survey. International Journal of Food Microbiology 243: 103–107. https://doi.org/10.1016/j.ijfoodmicro.2016.11.005

Hall TA.1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41:95–98.

Hartley JC. 1967. Laboratory culture of a tettigoniid, Homorocoryphus nitidulus vicinus (Wlk.) (Orthoptera). Bulletin of Entomological Research 57: 203–205. https://doi.org/10.1017/S0007485300049920

Hinks CF, Erlandson MA. 1994. Rearing grasshoppers and locusts: review, rationale and update. Journal of Orthoptera Research 3: 1–10. https://doi.org/10.2307/3503403

Inglis GD, Johnson DL, Goettel MS. 1996. Effects of temperature and thermoregulation on mycosis by Beauveria bassianain Grasshoppers. Biological Control 7(2): 131–139. https://doi.org/10.1006/bcon.1996.0076

Insua JL, Llobet E, Moranta D, Pérez-Gutiérrez C, Tomás A, Garmendia J, Bengoechea JA. 2013. Modeling Klebsiella pneumoniae pathogenesis by infection of the wax moth Galleria mellonella. Infection and Immunity 81(10): 3552–3565. https://doi.org/10.1128/IAI.00391-13

Khan S, Guo L, Shi H, Mijit M, Qiu D. 2012. Bioassay and enzymatic comparison of six entomopathogenic fungal isolates for virulence or toxicity against green peach aphids Myzus persicae. African Journal of Biotechnology 11: 14193–14203.

Khaskheli MI, Khaskheli AJ, Jiskani MM, Chang X, Gong G, Poussio GB, Otho SA. 2019. The use of promising entomopathogenic fungi for eco-friendly management of Helicoverpa armigera Hubner in chickpea. International Journal of Environment, Agriculture and Biotechnology 4(2):705–712. https://doi.org/https://dx.doi.org/10.22161/ijeab

Kinyuru JN, Kenji GM, Muhoho SN, Ayieko M. 2011. Nutritional potential of longhorn grasshopper (Ruspolia differens) consumed in Siaya district, Kenya. Journal of Agriculture, Science and Technology 12: 32–46.

Kinyuru JN, Konyole SO, Kenji GM, Onyango CA, Owino VO, Owuor BO, Estambale BB, Friis H, Roos N. 2012. Identification of traditional foods with public health potential for complementary feeding in western Kenya. Journal of Food Research 1:148–158. https://doi.org/10.5539/jfr.v1n2p148

Kumar S, Riffat S, Wagan MS. 2013. Pathogenic Application of Aspergillus species for the control of agricultural important grasshoppers. Journal of Biodiversity and Environmental Sciences 3(12): 223–229.

Labu S, Subramanian S, Khamis FM, Akite P, Kasangaki P, Chemurot M, Tanga CM, Ombura FLO, Egonyu JP. 2021. Microbial contaminants in wild harvested and traded edible long-horned grasshopper, Ruspolia differens (Orthoptera: Tettigoniidae) in Uganda. Journal of Insects as Food and Feed 7(7): 1131–1141. https://doi.org/10.3920/JIFF2020.0069

Lacey L. 2012. Manual of techniques in invertebrate pathology. 2nd ed. Amsterdam, the Netherlands: Academic Press.

Lehtovaara VJ, Roininen H, Valtonen A. 2018. Optimal temperature for rearing the edible Ruspolia differens (Orthoptera: Tettigoniidae). Journal of Economic Entomology 111(6): 2652–2659. https://doi.org/10.1093/jee/toy234

Lenth R, Lenth MR. 2018. Package ‘lsmeans’. The American Statistician 34: 216–221.

Leonard A, Khamis FM, Egonyu JP, Kyamanywa S, Ekesi S, Tanga CM, Copeland RS, Subramanian S. 2020. Identification of edible short- and long-horned grasshoppers and their host plants in East Africa. Journal of Economic Entomology 113(5): 2150–2162. https://doi.org/10.1093/jee/toaa166

Leonard A, Egonyu JP, Tanga CM, Kyamanywa S, Tonnang HZ, Azrag AG, Khamis FM, Ekesi S, Subramanian S. 2021. Predicting the current and future distribution of the edible long-horned grasshopper Ruspolia differens (Serville) using temperature-dependent phenology models. Journal of Thermal Biology 95:102786. https://doi.org/10.1016/j.jtherbio.2020.102786

Malinga GM, Valtonen A, Lehtovaara VJ, Rutaro K, Opoke R, Nyeko P, Roininen H. 2018a. Diet acceptance and preference of the edible grasshopper Ruspolia differens (Orthoptera: Tettigoniidae). Applied Entomology and Zoology 53: 229–236. https://doi.org/10.1007/s13355-018-0550-3

Malinga GM, Valtonen A, Lehtovaara VJ, Rutaro K, Opoke R, Nyeko P, Roininen H. 2018b. Mixed artificial diets enhance the developmental and reproductive performance of the edible grasshopper, Ruspolia differens (Orthoptera: Tettigoniidae). Applied Entomology and Zoology 53(2): 237–242. https://doi.org/10.1007/s13355-018-0548-x

Matojo ND, Yarro JG. 2013. Anatomic morphometrics of the “Senene” Tettigoniid Ruspolia differens Serville (Orthoptera: Conocephalidae) from North-West Tanzania. International Scholarly Research Notices 2013: 176342. https://doi.org/http://dx.doi.org/10.1155/2013/176342

Meshram PB, Verma P, Patel A, Verma RK. 2015. Entomopathogenic fungi of Albizia lebbeck seed borer, Bruchus bilineatopygus (Coleoptera: Bruchidae). International Journal of Current Research 7 (12), 24547–24551.

Miller SC, Campbell BC, Becnel J, Ehrman L. 1995. Bacterial entomopathogens from the Drosophila paulistorum semispecies complex. Journal of Invertebrate Pathology 65(2): 125–131. https://doi.org/10.1006/jipa.1995.1019

Mukasa Y, Kyamanywa S, Sserumaga JP, Otim M, Tumuhaise V, Erbaugh M, Egonyu JP. 2019. An atoxigenic L‐strain of Aspergillus flavus (Eurotiales: Trichocomaceae) is pathogenic to the coffee twig borer, Xylosandrus compactus (Coleoptera: Curculionidea: Scolytinae). Environmental Microbiology Reports 11(4): 508–517. https://doi.org/10.1111/1758-2229.12705

Ng’ang’a J, Imathiu S, Fombong F, Ayieko M, Vanden Broeck J, Kinyuru J. 2019. Microbial quality of edible grasshoppers Ruspolia differens (Orthoptera: Tettigoniidae): From wild harvesting to fork in the Kagera Region, Tanzania. Journal of Food Safety 39(1): e12549. https://doi.org/10.1111/jfs.12549

Okia CA, Odongo W, Nzabamwita P, Ndimubandi J, Nalika N, Nyeko P. 2017. Local knowledge and practices on use and management of edible insects in Lake Victoria basin, East Africa. Journal of Insects as Food and Feed 3: 83–93. https://doi.org/10.3920/JIFF2016.0051

Opisa S, Du Plessis H, Akutse KS, Fiaboe KKM, Ekesi S. 2018. Effects of Entomopathogenic fungi and Bacillus thuringiensis‐based biopesticides on Spoladea recurvalis (Lepidoptera: Crambidae). Journal of Applied Entomology 142(6): 617–626. https://doi.org/10.1111/jen.12512

R Core Team. 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

De la Rosa W, Alatorre R, Barrera JF, Toriello C. 2000. Effect of Beauveria bassiana and Metarhizium anisopliae (Deuteromycetes) upon the coffee berry borer (Coleoptera: Scolytidae) under field conditions. Journal of Economic Entomology 93(5): 1409–1414. https://doi.org/10.1603/0022-0493-93.5.1409

Shah PA, Kooyman C, Paraïso A. 1997. Surveys for fungal pathogens of locusts and grasshoppers in Africa and the Near East. The Memoirs of the Entomological Society of Canada 129: 27–35. https://doi.org/10.4039/entm129171027-1

Shapiro-Ilan DI, Jackson M, Reilly CC, Hotchkiss MW. 2004. Effects of combining an entomopathogenic fungi or bacterium with entomopathogenic nematodes on mortality of Curculio caryae (Coleoptera: Curculionidae). Biological Control 30(1): 119–126. https://doi.org/10.1016/j.biocontrol.2003.09.014

Sharma A, Thakur A, Kaur S, Pati PK. 2012. Effect of Alternaria alternata on the coccinellid pest Henosepilachna vigintioctopunctata and its implications for biological pest management. Biological Control 85(4): 513–518. https://doi.org/10.1007/s10340-012-0432-3

Ssepuuya G, Mukisa IM, Nakimbugwe D. 2017. Nutritional composition, quality, and shelf stability of processed Ruspolia nitidula (edible grasshoppers). Food Science & Nutrition 5(1): 103–112. https://doi.org/10.1002/fsn3.369

Ssepuuya G, Wynants E, Verreth C, Crauwels S, Lievens B, Claes J, Nakimbugwe D, Van Campenhout L. 2019. Microbial characterisation of the edible grasshopper Ruspolia differens in raw condition after wild-harvesting in Uganda. Food Microbiology 77: 106–117. https://doi.org/10.1016/j.fm.2018.09.005

Suzuki MT, Giovannoni SJ. 1996. Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Applied and Environmental Microbiology 62(2): 625–630. https://doi.org/10.1128/aem.62.2.625-630.1996

Toledo AV, Virla E, Humber RA, Paradell SL, Lastra CL. 2006. First record of Clonostachys rosea (Ascomycota: Hypocreales) as an entomopathogenic fungus of Oncometopia tucumana and Sonesimia grossa (Hemiptera: Cicadellidae) in Argentina. Journal of Invertebrate Pathology 92(1): 7–10. https://doi.org/10.1016/j.jip.2005.10.005

Tuininga AR, Miller JL, Morath SU, Daniels TJ, Falco RC, Marchese M, Sahabi S, Rosa D, Stafford KC . 2009. Isolation of entomopathogenic fungi from soils and Ixodes scapularis (Acari: Ixodidae) ticks: prevalence and methods. Journal of Medical Entomology 46(3): 557–565. https://doi.org/10.1603/033.046.0321

Venables, W.N. & Dichmont, C.M. 2004. GLMs, GAMs and GLMMs: an overview of theory for applications in fisheries research. Fisheries Research 70(2-3), 319–337. https://doi.org/htts://dopi:10.1016/j.fishres.2004.08.011

Wang C, Hu G, St. Leger RJ. 2005. Differential gene expression by Metarhizium anisopliae growing in root exudate and host (Manduca sexta) cuticle or hemolymph reveals mechanisms of physiological adaptation. Fungal Genetics and Biology 42(8): 704–718.

Yaman M, Ertürk Ö. 2016. Isolation, identification and insecticidal effects of entomopathogenic bacteria from the willow flea beetle, Crepidodera aurata (Coleoptera; Chrysomelidae). Progress in Plant Protection 56(2): 225–229. https://doi.org/10.14199/ppp-2016-037

Youngjin P, Kim K, Kim Y. 2002. A pathogenic bacterium, Enterococcus faecalis, to the beet armyworm, Spodoptera exigua. Journal of Asia-Pacific Entomology 5(2): 221–225. https://doi.org/10.1016/S1226-8615(08)60156-9

Zelazny B, Goettel MS, Keller B. 1997. The potential of bacteria for the microbial control of grasshoppers and locusts. The Memoirs of the Entomological Society of Canada 129: 147–156. https://doi.org/10.4039/entm129171147-1

Downloads

Additional Files

Published

2023-10-24

How to Cite

1.
Leonard A, Egonyu JP, Khamis F, Tanga C, Ekesi S, Kyamanywa S, et al. Identification and virulence screening of fungal and bacterial entomophathogens of the edible long-horned grasshopper Ruspolia differens (Orthoptera: Tettigoniidae) from Uganda. Afr. Entomol. [Internet]. 2023 Oct. 24 [cited 2024 May 6];31. Available from: https://www.africanentomology.com/article/view/11581

Issue

Section

Articles