A preliminary assessment of the physiological and morphological correlates of beetle aggression in an emerging sugarcane pest, Cacosceles newmannii (Thomson, 1877) (Coleoptera: Cerambycidae)

Authors

DOI:

https://doi.org/10.17159/2254-8854/2022/a10298

Abstract

Understanding the morphological and physiological correlates of competitive behaviours can provide important insights into the ecology of competition, home range size and resource consumption. Here we first estimated and defined sexual dimorphism in a poorly studied African cerambycid species, Cacosceles newmannii (Thomson, 1877). We then assessed morphological and physiological attributes of male beetles in relation to their fighting behaviour. Suites of morphological and energetic measurements were carried out on adult males, the latter before and after male-male interactions. Aggressive behaviour and the outcomes of male fighting trials were assessed under controlled conditions. The species is highly sexually dimorphic in relation to mandible size. During male-male interactions, a continuum of behaviours with an increasing risk of injury and metabolic cost was observed. Grasping was prolonged in males with larger fighting apparatus, who also tended to use more energy during the encounter than males displaying other behaviours. Our results indicate that the mandible size in C. newmannii serves as an honest signal of fighting ability in this species. Additionally, energetic assessments in preparation for fighting, costs during a fight, and persistence of metabolic costs post-fighting may be useful for understanding the relative fitness costs of competition.

Downloads

Download data is not yet available.

References

Adamo SA, Parsons NM. 2006. The emergency life-history stage and immunity in the cricket, Gryllus texensis. Animal Behaviour 72(1): 235–244. https://10.1016/j.anbehav.2006.01.011 DOI: https://doi.org/10.1016/j.anbehav.2006.01.011

Andersson M. 1994. Sexual Selection. Princeton, NJ: Princeton University Press. https://10.1515/9780691207278 DOI: https://doi.org/10.1515/9780691207278

Arnott G, Elwood RW. 2008. Information gathering and decision making about resource value in animal contests. Animal Behaviour 76(3): 529–542 https://10.1016/j.anbehav.2008.04.019 DOI: https://doi.org/10.1016/j.anbehav.2008.04.019

Basolo AL, Alcaraz G. 2003.The turn of the sword: length increases male swimming costs in swordtails. Proceedings of the Royal Society B: Biological Sciences 270(1524): 1631–1636. https://10.1098/rspb.2003.2388 DOI: https://doi.org/10.1098/rspb.2003.2388

Boisseau RP, Arthur Woods H, Goubault M. 2017. The metabolic costs of fighting and host exploitation in a seed-drilling parasitic wasp. Journal of Experimental Biology 220(21): 3955–3966. https://10.1242/jeb.160887 DOI: https://doi.org/10.1242/jeb.160887

Briffa M, Sneddon LU. 2007. Physiological constraints on contest behaviour. Functional Ecology 21(4): 627–637. https://10.1111/j.1365-2435.2006.01188.x DOI: https://doi.org/10.1111/j.1365-2435.2006.01188.x

Camerlink I, Turner SP, Farish M, Arnott G. The influence of experience on contest assessment strategies. Scientific Reports 7(1): 14492. https://10.1038/s41598-017-15144-8 DOI: https://doi.org/10.1038/s41598-017-15144-8

Careau V, Garland T. 2015. Energetics and behavior: Many paths to understanding. Trends in Ecology and Evolution 30(7): 365–366. https://10.1016/j.tree.2015.04.007 DOI: https://doi.org/10.1016/j.tree.2015.04.007

Chapin KJ, Peixoto PEC, Briffa M. 2019. Further mismeasures of animal contests: a new framework for assessment strategies. Behavioural Ecology 30(5): 1177–1185. https://10.1093/beheco/arz081 DOI: https://doi.org/10.1093/beheco/arz081

Chown SL, Storey KB. 2006. Linking molecular physiology to ecological realities. Physiological and Biochemical Zoology 79(2): 314–323. https://10.1086/499989 DOI: https://doi.org/10.1086/499989

De Nys HM, Bertschinger HJ, Turkstra JA, Colenbrander B, Palme R, Human AM. 2010, Vaccination against GnRH may suppress aggressive behaviour and musth in African elephant (Loxodonta africana) bulls – A pilot study. Journal of the South African Veterinary Association. 81(1): 8–15. https://10.4102/jsava.v81i1.88. DOI: https://doi.org/10.4102/jsava.v81i1.88

del Sol JF, Hongo Y, Boisseau RP, Berman GH, Allen CE, Emlen DJ. 2021. Population differences in the strength of sexual selection match relative weapon size in the Japanese rhinoceros beetle, Trypoxylus dichotomus (Coleoptera: Scarabaeidae). Evolution 75(2): 394–413. https://10.1111/evo.14101 DOI: https://doi.org/10.1111/evo.14101

Doubell M, Grant PBC, Esterhuizen N, Bazelet CS, Addison P, Terblanche JS. 2017. The metabolic costs of sexual signalling in the chirping katydid Plangia graminea (Serville) (Orthoptera: Tettigoniidae) are context dependent: Cumulative costs add up fast. Journal of Experimental Biology 220(23): 4440–4449. https://10.1242/jeb.160036 DOI: https://doi.org/10.1242/jeb.160036

Eberhard WG. 1979. The function of horns in Podischnus agenor (Dynastiae) and other beetles. In: Blum M, Blum N, editors. Sexual selection and reproductive competition in insects. Cambridge MA: Academic Press. pp 231–258 DOI: https://doi.org/10.1016/B978-0-12-108750-0.50013-6

Elwood RW, Arnott G. 2012. Understanding how animals fight with Lloyd Morgan’s canon. Animal Behaviour. 84(5): 1095–1102. https://10.1016/j.anbehav.2012.08.035. DOI: https://doi.org/10.1016/j.anbehav.2012.08.035

Enquist M, Leimar O, Ljungberg T, Mallner Y, Segerdahl N. 1990. A test of the sequential assessment game: fighting in the cichlid fish Nannacara anomala. Animal Behaviour 40(1): 1–14. https://10.1016/S0003-3472(05)80660-8 DOI: https://doi.org/10.1016/S0003-3472(05)80660-8

Ferreira GWS. 1980. The Parandrinae and the Prioninae of southern Africa (Cerambycidae, Coleoptera). Memoirs van die Nasionale Museum Bloemfontein 13: 1–335

Glazier DS. 2009. Activity affects intraspecific body-size scaling of metabolic rate in ectothermic animals. Journal of Comparative Physiology B 179(7): 821–828. https://10.1007/s00360-009-0363-3 DOI: https://doi.org/10.1007/s00360-009-0363-3

Goyens J, Dirckx J, Aerts P. 2015a. Stag beetle battle behavior and its associated anatomical adaptations. Journal of Insect Behaviour 28(3): 227–244. https://10.1007/s10905-015-9495-3 DOI: https://doi.org/10.1007/s10905-015-9495-3

Goyens J, Van Wassenbergh S, Dirckx J, Aerts P. 2015b. Cost of flight and the evolution of stag beetle weaponry. Journal of the Royal Society Interface 12(106): 20150222. https://10.1098/rsif.2015.0222 DOI: https://doi.org/10.1098/rsif.2015.0222

Haack R, Bauer L, Gao R-T, McCarthy J, Miller D, Petrice T, Poland T. 2018. Anoplophorag glabripennis within-tree distribution, seasonal development, and host suitability in China and Chicago. The Great Lakes Entomologist 39: 169–183

Hardy I, Briffa M. 2013. Animal contests. Cambridge: Cambridge University Press. https://10.1017/CBO9781139051248 DOI: https://doi.org/10.1017/CBO9781139051248

Okamoto K. Hongo Y,. 2013. Interspecific contests between males of two Japanese stag beetle species, Lucanus maculifemoratus and Prosopocoilus inclinatus: what overcomes a body size disadvantage? Behaviour 150(1): 39–59. https://10.1163/1568539X-00003036 DOI: https://doi.org/10.1163/1568539X-00003036

Hsu Y, Earley RL, Wolf LL. 2006. Modulation of aggressive behavior by fighting experience: mechanisms and contest outcomes. Biological Review of the Cambridge Philosophical Society 81(1): 33–74. https://10.1017/S146479310500686X DOI: https://doi.org/10.1017/S146479310500686X

Huntingford FA, Turner A. 1987. Animal conflict. London: Hall & Chapman. DOI: https://doi.org/10.1007/978-94-009-3145-9

Inoue A, Hasegawa E. 2013. Effect of morph types, body size and prior residence on food-site holding by males of the male-dimorphic stag beetle Prosopocoilus inclinatus (Coleoptera: Lucanidae). Journal of Ethology 31(1):55–60. https://10.1007/s10164-012-0350-0 DOI: https://doi.org/10.1007/s10164-012-0350-0

Jakobsson S, Brick O, Kullberg C. 1995. Escalated fighting behaviour incurs increased predation risk. Animal Behaviour. 49(1): 235–239. https://10.1016/0003-3472(95)80172-3. DOI: https://doi.org/10.1016/0003-3472(95)80172-3

Javal M, Roux G, Roques A, Sauvard D. 2018. Asian Long-horned Beetle dispersal potential estimated in computer-linked flight mills. Journal of Applied Entomology 142(1–2): 282–286. https://10.1111/jen.12408 DOI: https://doi.org/10.1111/jen.12408

Javal M, Terblanche JS, Conlong DE, Malan AP. 2019a. First screening of entomopathogenic nematodes and fungus as biocontrol agents against an emerging pest of sugarcane, Cacosceles newmannii (Coleoptera: Cerambycidae). Insects 10(4): 117. https://10.3390/insects10040117 DOI: https://doi.org/10.3390/insects10040117

Javal M, Thomas S, Lehmann P, Barton MG, Conlong DE, Du Plessis A, Terblanche JS. 2019b. The effect of oxygen limitation on a xylophagous insect’s heat tolerance is influenced by life-stage through variation in aerobic scope and respiratory anatomy. Frontiers in Physiology 10: 1426. https://10.3389/fphys.2019.01426 DOI: https://doi.org/10.3389/fphys.2019.01426

Kassambara A, Mundt F. 2016. Package ‘factoextra’. Extract and Visualize the Results of Multivariate Data Analyses. R Foundation for Statistical Computing, Vienna. Austria. https://www.R-project.org/

Kawano K. 2006. Sexual dimorphism and the making of oversized male characters in beetles (Coleoptera). Annals of the Entomological Society of America 99(2): 327–341. https://10.1603/0013-8746(2006)099[0327:SDATMO]2.0.CO;2. DOI: https://doi.org/10.1603/0013-8746(2006)099[0327:SDATMO]2.0.CO;2

Kleiber M. 1932. Body size and metabolism. Hilgardia 6(11): 315–353. https://10.3733/hilg.v06n11p315 DOI: https://doi.org/10.3733/hilg.v06n11p315

Kotiaho JS. 2001. Costs of sexual traits: a mismatch between theoretical considerations and empirical evidence. Biological Review of the Cambridge Philosophical Society 76(3): S1464793101005711. https://10.1017/S1464793101005711 DOI: https://doi.org/10.1017/S1464793101005711

LaFollette RM. 1971. Agonistic behaviour and dominance in confined wallabies, Wallabia rufogrisea frutica. Animal Behaviour 19(1): 93–101. https://10.1016/S0003-3472(71)80140-9 DOI: https://doi.org/10.1016/S0003-3472(71)80140-9

Lailvaux SP, Irschick DJ. 2006. A functional perspective on sexual selection: insights and future prospects. Animal Behaviour 72(2): 263–273. https://10.1016/j.anbehav.2006.02.003 DOI: https://doi.org/10.1016/j.anbehav.2006.02.003

Lê S, Josse J, Rennes A, Husson F. 2008. FactoMineR: An R package for multivariate analysis. JSS Journal of Statistical Software. 25(1): 1–18. DOI: https://doi.org/10.18637/jss.v025.i01

Lehmann P, Javal M, Du Plessis A, Terblanche JS. 2021, Using µCT in live larvae of a large wood-boring beetle to study tracheal oxygen supply during development. Journal of Insect Physiology 130: 104199. https://10.1016/j.jinsphys.2021.104199 DOI: https://doi.org/10.1016/j.jinsphys.2021.104199

Leimar O, Enquist M. 1984. Effects of asymmetries in owner-intruder conflicts. Journal of Theoretical Biology 111(3): 475–491. https://10.1016/S0022-5193(84)80235-0 DOI: https://doi.org/10.1016/S0022-5193(84)80235-0

Lopez VM, Hoddle MS, Francese JA, Lance DR, Ray AM. 2017. Assessing flight potential of the invasive Asian Longhorned Beetle (Coleoptera: Cerambycidae) with computerized flight mills. Journal of Economic Entomology 110(3):1070–1077. https://10.1093/jee/tox046 DOI: https://doi.org/10.1093/jee/tox046

Millar JG, Hanks LM. 2017. Chemical ecology of cerambycids. In: Qiao W, editor. Cerambycidae of the World: Biology and Pest Management. Boco Raton: CRC Press. p 291–303. https://10.1201/b21851

Moczek AP, Emlen DJ. 2000. Male horn dimorphism in the scarab beetle, Onthophagus taurus: do alternative reproductive tactics favour alternative phenotypes? Animal Behaviour 59(2): 459–466. https://10.1006/anbe.1999.1342 DOI: https://doi.org/10.1006/anbe.1999.1342

Modlmeier AP, Keiser CN, Wright CM, Lichtenstein JLL, Pruitt JN. 2015. Integrating animal personality into insect population and community ecology. Current Opinion in Insect Science 9: 77–85. https://10.1016/j.cois.2015.03.008 DOI: https://doi.org/10.1016/j.cois.2015.03.008

Neat FC, Taylor AC, Huntingford FA. 1998. Proximate costs of fighting in male cichlid fish: the role of injuries and energy metabolism. Animal Behaviour 55(4): 875–882. https://10.1006/anbe.1997.0668 DOI: https://doi.org/10.1006/anbe.1997.0668

O’Brien DM, Boisseau RP, Duell M, McCullough E, Powell EC, Somjee U, Solie S, Hickey AJ, Holwell GI, Painting CJ, et al. (2019). Muscle mass drives cost in sexually selected arthropod weapons. Proceedings of the Royal Society B: Biological Sciences 286: 20191063. https://10.1098/rspb.2019.1063 DOI: https://doi.org/10.1098/rspb.2019.1063

Okada K, Miyanoshita A, Miyatake T. 2006. Intra-sexual dimorphism in male mandibles and male aggressive behavior in the broad-horned flour beetle Gnatocerus cornutus (Coleoptera: tenebrionidae). Journal of Insect Behaviour 19(4): 457–467. https://10.1007/s10905-006-9038-z DOI: https://doi.org/10.1007/s10905-006-9038-z

Okada K, Miyatake T. 2004. Sexual dimorphism in mandibles and male aggressive behavior in the presence and absence of females in the beetle Librodor japonicus (Coleoptera: Nitidulidae). Annals of the Entomological Society of America 97(6): 1342–1346. https://10.1603/0013-8746(2004)097[1342:SDIMAM]2.0.CO;2 DOI: https://doi.org/10.1603/0013-8746(2004)097[1342:SDIMAM]2.0.CO;2

Parker GA. 1974. Assessment strategy and the evolution of fighting behaviour. Journal of Theoretical Biology 47(1): 223–243. https://10.1016/0022-5193(74)90111-8 DOI: https://doi.org/10.1016/0022-5193(74)90111-8

Peterson B, Carl P. 2014. Package ‘PerformanceAnalytics’. Econometric Tools for Performance and Risk Analysis. R Foundation for Statistical Computing, Vienna. Austria. https://www.R-project.org/

Pinto NS, Palaoro AV, Peixoto PEC. 2019. All by myself? Meta‐analysis of animal contests shows stronger support for self than for mutual assessment models. Biological Reviews 94(4): 12509. https://10.1111/brv.12509 DOI: https://doi.org/10.1111/brv.12509

Pohlert T. 2014. The pairwise multiple comparison of mean ranks package. R Foundation for Statistical Computing, Vienna. Austria. https://www.R-project.org/

R Core Team. 2013. R: A language and environment for statistical computing (3.4.3). R Foundation for Statistical Computing. https://www.R-project.org/

Smit C, Javal M, Conlong DE, Hall G, Terblanche JS. 2021a. Host range determination in a novel outbreak pest of sugarcane, Cacosceles newmannii (Coleoptera: Cerambycidae, Prioninae), inferred from stable isotopes. Agricultural and Forest Entomology 23(3):378–387. https://10.1111/afe.12439 DOI: https://doi.org/10.1111/afe.12439

Smit C, Javal M, Lehmann P, Terblanche JS. 2021b. Metabolic responses to starvation and feeding contribute to the invasiveness of an emerging pest insect. Journal of Insect Physiology 128:104162. https://10.1016/j.jinsphys.2020.104162 DOI: https://doi.org/10.1016/j.jinsphys.2020.104162

Smith JM, Parker GA. 1976. The logic of asymmetric contests. Animal Behaviour 24(1): 159–175. https://10.1016/S0003-3472(76)80110-8 DOI: https://doi.org/10.1016/S0003-3472(76)80110-8

Snell-Rood E, Moczek A. 2013. Horns and the role of development in the evolution of beetle contests. In: Hardy I, Briffa M, editors. Animal Contests. Cambridge: Cambridge University Press. https://10.1017/CBO9781139051248.011

Somjee U, Woods HA, Duell M, Miller CW. 2018. The hidden cost of sexually selected traits: The metabolic expense of maintaining a sexually selected weapon. Proceedings of the Royal Society B: Biological Sciences 285(1891): 1685. https://10.1098/rspb.2018.1685 DOI: https://doi.org/10.1098/rspb.2018.1685

Songvorawit N, Butcher BA, Chaisuekul C. 2018. Resource Holding Potential and the outcome of aggressive interactions between paired male Aegus chelifer chelifer (Coleoptera: Lucanidae) Stag Beetles. Journal of Insect Behaviour 31(4):347–360. https://10.1007/s10905-018-9683-z DOI: https://doi.org/10.1007/s10905-018-9683-z

Tanahashi M, Matsushita N, Togashi K. 2009. Are stag beetles fungivorous? Journal of Insect Physiology 55(11): 983–988. https://10.1016/j.jinsphys.2009.07.002 DOI: https://doi.org/10.1016/j.jinsphys.2009.07.002

Taylor PW, Elwood RW. 2003. The mismeasure of animal contests. Animal Behaviour 65(6): 1195–1202. https://10.1006/anbe.2003.2169 DOI: https://doi.org/10.1006/anbe.2003.2169

Terblanche JS, Clusella-Trullas S, Chown SL. 2010. Phenotypic plasticity of gas exchange pattern and water loss in Scarabaeus spretus (Coleoptera: Scarabaeidae): Deconstructing the basis for metabolic rate variation. Journal of Experimental Biology 213(17): 2940–2949. https://10.1242/jeb.041889 DOI: https://doi.org/10.1242/jeb.041889

Videlier M, Rundle HD, Careau V. 2019. Sex-specific among-individual covariation in locomotor activity and resting metabolic rate in Drosophila melanogaster. American Naturalist 194(6): E164–E176. https://10.1086/705678 DOI: https://doi.org/10.1086/705678

Vieira MC, Peixoto PEC. 2013. Winners and losers: a meta‐analysis of functional determinants of fighting ability in arthropod contests. Functional Ecology 27(2): 305–313. https://10.1111/1365-2435.12051 DOI: https://doi.org/10.1111/1365-2435.12051

Way M, Conlong D, Rutherford R, Sweby D, Gillespie D, Stramack R, Lagerwall G, Grobbelaar E, Perissinotto R. 2017. Cacosceles (Zelogenes) newmannii (Thomson) (Cerambycidae: Prioninae), a new pest in the South African sugarcane industry. Proceedings of the SASTA 90: 62–65

Wright E, Galbany J, McFarlin SC, Ndayishimiye E, Stoinski TS, Robbins MM. Male body size, dominance rank and strategic use of aggression in a group-living mammal. Animal Behaviour 2019;151: 87–102. https://10.1016/j.anbehav.2019.03.011 DOI: https://doi.org/10.1016/j.anbehav.2019.03.011

Zahavi A. 1980. Ritualization and the evolution of movement signals. Behaviour 72(1–2): 77–80. https://10.1163/156853980X00050 DOI: https://doi.org/10.1163/156853980X00050

Downloads

Published

2022-05-17

Issue

Section

Articles

How to Cite

1.
A preliminary assessment of the physiological and morphological correlates of beetle aggression in an emerging sugarcane pest, Cacosceles newmannii (Thomson, 1877) (Coleoptera: Cerambycidae). Afr. Entomol. [Internet]. 2022 May 17 [cited 2024 Oct. 5];30. Available from: https://www.africanentomology.com/article/view/10928