Effects of indigenous crop cultivation on mite biodiversity in a biodiversity hotspot

Authors

DOI:

https://doi.org/10.17159/2254-8854/2025/a21618

Keywords:

Acari, Oribatida, fynbos, Proctolaelaps vandenbergi, Protea repens

Abstract

Exotic crop production negatively affects native biodiversity and alters ecosystem functions and services. Cultivation of indigenous crops can mediate some biodiversity impacts, as these are often less intensively managed than exotic crops and they provide familiar niches for native organisms. Protea (Proteaceae), a floricultural crop with high economic value and ecological significance, is harvested within both natural and cultivated systems in South Africa. A multitude of organisms are intimately involved in Protea ecology, but many are also pests and pose significant phytosanitary risks. Here we evaluated the impact of Protea cultivation on the diversity of mites associated with inflorescences, infructescences, and the rhizosphere in the Greater Cape Floristic Region biodiversity hotspot of South Africa. Natural sites harboured higher mite diversity than cultivated sites, although this was only significant for those mites associated with the rhizosphere or when Protea crops were intensively managed. Mite community assemblage composition differed between different management types, localities, and niches. Management actions had little effect on mite assemblage composition in inflorescences and infructescences, likely due to continuous long-distance colonisation from natural areas via pollinators. In contrast, mite assemblages associated with the rhizosphere were highly impacted in all cultivated sites. These results indicate that indigenous crops can sustain substantial above-ground native mite biodiversity, but ecologically important soil assemblages may be severely impacted. Current field-based management strategies are not effective in controlling mite assemblages within Protea inflorescences, posing significant phytosanitary risks.

Downloads

Download data is not yet available.

References

Anderson MJ. 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecology. 26:32–46. https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x. DOI: https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x

Anderson MJ. 2006. Distance-based tests for homogeneity of multivariate dispersions. Biometrics. 62:245–253. https://doi.org/10.1111/j.1541-0420.2005.00440.x. DOI: https://doi.org/10.1111/j.1541-0420.2005.00440.x

Andrén H. 1994. Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat: a review. Oikos. 71:355–366. DOI: https://doi.org/10.2307/3545823

Aylward J, Dreyer LL, Steenkamp ET, Wingfield MJ, Roets F. 2015. Long-distance dispersal and recolonization of a fire-destroyed niche by a mite-associated fungus. Fungal Biology. 119:245–256. https://doi.org/10.1016/j.funbio.2014.12.010. DOI: https://doi.org/10.1016/j.funbio.2014.12.010

Aylward J, Roets F, Dreyer LL, Wingfield MJ. 2023. Unseen fungal biodiversity and complex interorganismal interactions in Protea flower heads. Fungal Biology Reviews. 45:100317. https://doi.org/10.1016/j.fbr.2023.100317. DOI: https://doi.org/10.1016/j.fbr.2023.100317

Beaulieu F, Weeks AR. 2007. Free-living mesostigmatic mites in Australia: their roles in biological control and bioindication. Australian Journal of Experimental Agriculture. 47:460–478. https://doi.org/10.1071/EA05341. DOI: https://doi.org/10.1071/EA05341

Bedano JC, Cantú MP, Doucet ME. 2006. Influence of three different land management practices on soil mite (Arachnida: Acari) densities in relation to a natural soil. Applied Soil Ecology. 32:293–304. https://doi.org/10.1016/j.apsoil.2005.07.009. DOI: https://doi.org/10.1016/j.apsoil.2005.07.009

Behan-Pelletier VM. 1999. Oribatid mite biodiversity in agroecosystems: role for bioindication. Agriculture, Ecosystems and Environment. 74:411–423. https://doi.org/10.1016/S0167-8809(99)00046-8. DOI: https://doi.org/10.1016/B978-0-444-50019-9.50023-6

Behan-Pelletier VM, Walter DE. 2000. Biodiversity of oribatid mites (Acari: Oribatida) in tree canopies and litter. In: Coleman DC, Hendrix PF (eds), Invertebrates as webmasters in ecosystems. United Kingdom: CABI Publishing. pp 187–202. DOI: https://doi.org/10.1079/9780851993942.0187

Carignan V, Villard MA. 2002. Selecting indicator species to monitor ecological integrity: a review. Environmental Monitoring and Assessment. 78:45–61. https://doi.org/10.1023/A:1016136723584. DOI: https://doi.org/10.1023/A:1016136723584

Chikomo NN. 2023. Seasonal abundance and diversity of mites in Coffea arabica L. at Beaver Creek Coffee Estate, South Africa. MSc dissertation, University of the Witwatersrand, Johannesburg, South Africa.

Coetzee JH, Dippenaar-Schoeman A.S, Berg A. 1990. Spider assemblages on five species of proteaceous plants in the fynbos biome of South Africa. Phytophylactica. 22: 443-447.

Coetzee JH, Giliomee JH. 1985. Insects in association with the inflorescence of Protea repens (L.)(Proteaceae) and their role in pollination. Journal of the Entomological Society of Southern Africa. 48:303–314.

Coetzee JH, Giliomee JH. 1987. Borers and other inhabitants of the inflorescences and infructescences of Protea repens in the Western Cape. Phytophylactica. 19:1–6.

Coetzee JH, Littlejohn GM, Janick, J. 2007. Protea: a floricultural crop from the Cape Floristic Kingdom. Scripta Horticulturae. 5:77–112.

Colwell RK. 2005. EstimateS: Statistical estimation of species richness and shared species from samples. Version 7.5. http://purl.oclc.org/estimates.

Conradie B, Knoesen H. 2010. A survey of the cultivation and wild harvesting of fynbos flowers in South Africa (No. 1). Report. pp 1–19.

Cortet J, Gillon D, Joffre R, Ourcival JM. 2002. Effects of pesticides on organic matter recycling and microarthropods in a maize field: use and discussion of the litterbag methodology. European Journal of Soil Biology. 38:261–265. https://doi.org/10.1016/S1164-5563(02)01156-1. DOI: https://doi.org/10.1016/S1164-5563(02)01156-1

Duelli P, Obrist MK. 2003. Biodiversity indicators: the choice of values and measures. Agriculture, ecosystems and environment. 98:87–98. https://doi.org/10.1016/S0167-8809(03)00072-0. DOI: https://doi.org/10.1016/S0167-8809(03)00072-0

DTIC. 2023. Announcement of protection for R1,7 billion cut-flower export industry. Department of Trade, Industry and Competition media statement. https://www.thedtic.gov.za/announcement-of-protection-for-r17-billion-cut-flower-export-industry/#:~:text=Primary%20fynbos%20cut%2Dflower%20production,are%20women%20from%20rural%20areas.

Engel MS, CerÍaco LM, Daniel GM, Dellapé PM, Löbl I, Marinov M, Reis RE, Young MT, et al. 2021. The taxonomic impediment: a shortage of taxonomists, not the lack of technical approaches. Zoological Journal of the Linneaen Society. 193: 381-387. https://doi.org/10.1093/zoolinnean/zlab072. DOI: https://doi.org/10.1093/zoolinnean/zlab072

Gerber AI, Hoffman EW. 2014. International Protea Association and current global Proteaceae production: Achievements and challenges. Acta Horticulturae. 1031:17–28. https://doi.org/10.17660/ActaHortic.2014.1031.1. DOI: https://doi.org/10.17660/ActaHortic.2014.1031.1

Gerlach J, Samways M, Pryke J. 2013. Terrestrial invertebrates as bioindicators: an overview of available taxonomic groups. Journal of Insect Conservation. 17:831–850. https://doi.org/10.1007/s10841-013-9565-9. DOI: https://doi.org/10.1007/s10841-013-9565-9

Giller KE, Beare MH, Lavelle P, Izac A-MN, Swift MJ. 1997. Agricultural intensification, soil biodiversity and agroecosystem function. Applied Soil Ecology. 6:3–16. https://doi.org/10.1016/S0929-1393(96)00149-7. DOI: https://doi.org/10.1016/S0929-1393(96)00149-7

Gulvik M. 2007. Mites (Acari) as indicators of soil biodiversity and land use monitoring: a review. Polish Journal of Ecology. 55:415–440.

Gurr GM, Wratten SD, Luna JM. 2003. Multi-function agricultural biodiversity: pest management and other benefits. Basic and Applied Ecology. 4:107–116. https://doi.org/10.1078/1439-1791-00122. DOI: https://doi.org/10.1078/1439-1791-00122

Hackman KO, Gong P, Venevsky S. 2017. A rapid assessment of landscape biodiversity using diversity profiles of arthropod morphospecies. Landscape Ecology. 32:209–223. https://doi.org/10.1007/s10980-016-0440-4. DOI: https://doi.org/10.1007/s10980-016-0440-4

Halliday RB. 2005. Predatory mites from crops and pastures in South Africa: potential natural enemies of redlegged earth mite Halotydeus destructor (Acari: Penthaleidae). Zootaxa. 1079:11. https://doi.org/10.11646/zootaxa.1079.1.2. DOI: https://doi.org/10.11646/zootaxa.1079.1.2

Hansen JD, Hara AH. 1994. A review of postharvest disinfestation of cut flowers and foliage with special reference to tropicals. Postharvest Biology and Technology. 4:193–212. https://doi.org/10.1016/0925-5214(94)90030-2. DOI: https://doi.org/10.1016/0925-5214(94)90030-2

Hooke RL, Martín-Duque JF, Pedraza J. 2012. Land transformation by humans: a review. GSA Today. 22:4–10. DOI: https://doi.org/10.1130/GSAT151A.1

Hortal J, Borges PV, Gaspar C. 2006. Evaluating the performance of species richness estimators: sensitivity to sample grain size. Journal of Animal Ecology. 75:274–287. https://doi.org/10.1111/j.1365-2656.2006.01048.x. DOI: https://doi.org/10.1111/j.1365-2656.2006.01048.x

Jamieson LE, Meier X, Page B, Zulhendri F, Page-Weir N, Brash D, McDonald RM, Stanley J, Woolf AB. 2009. A review of postharvest disinfestation technologies for selected fruits and vegetables. Auckland: The New Zealand Institute for Plant and Food Research Ltd. pp 1–11.

Jamshidian MK, Saboori A, Akrami MA, Van Straalen NM. 2015. Oribatid mite communities in contaminated soils nearby a lead and zinc smelting plant in Zanjan, Iran. Systematic and Applied Acarology. 20:251–262. https://doi.org/10.11158/saa.20.3.3. DOI: https://doi.org/10.11158/saa.20.3.3

Johann L, Horn TB, Carvalho GS, Ferla NJ. 2014. Diversity of mites (Acari) in vineyard ecosystems (Vitis vinifera) in two viticultural regions of Rio Grande Do Sul State, Brazil. Acarologia. 54:137–154. https://doi.org/10.1051/acarologia/20142122. DOI: https://doi.org/10.1051/acarologia/20142122

Joubert L, Esler KJ, Privett SDJ. 2009 The effect of ploughing and augmenting natural vegetation with commercial fynbos species on the biodiversity of Overberg Sandstone fynbos on the Agulhas Plain, South Africa. South African Journal of Botany. 75:526–531. https://doi.org/10.1016/j.sajb.2009.05.002. DOI: https://doi.org/10.1016/j.sajb.2009.05.002

Krantz G, Walter D. 2009. A manual of Acarology. 3rd edn. Lubbock: Texas Tech University Press.

Kremen C, Williams NM, Thorp RW. 2002. Crop pollination from native bees at risk from agricultural intensification. Proceedings of the National Academy of Sciences. 99:16812–16816. https://doi.org/10.1073/pnas.262413599. DOI: https://doi.org/10.1073/pnas.262413599

Mayr E. 1996. What is a species, and what is not? Philosophy of Science. 63:262–277. https://doi.org/10.1086/289912. DOI: https://doi.org/10.1086/289912

McMurtry JA, De Moraes GJ, Sourassou NF. 2013. Revision of the lifestyles of phytoseiid mites (Acari: Phytoseiidae) and implications for biological control strategies. Systematic and Applied Acarology. 18:297–320. https://doi.org/10.11158/saa.18.4.1. DOI: https://doi.org/10.11158/saa.18.4.1

Michereff-Filho M, Guedes, RNC, Della-Lucia TMC, Michereff MFF, Cruz I. 2004. International Journal of Pest Management. 50:91–99. https://doi.org/10.1080/09670870410001655885. DOI: https://doi.org/10.1080/09670870410001655885

Mics F. 2024. Ecological indication potential of oribatid mites. Opuscula Theologica et Scientifica. 2:59–95. https://doi.org/10.59531/ots.2024.2.1.59-95. DOI: https://doi.org/10.59531/ots.2024.2.1.59-95

Myburgh AC, Rust DJ. 1975. A survey of pests of the Proteaceae in the Western and Southern Cape Province. Journal of the Entomological Society of Southern Africa. 38:55–60.

Myburgh LC, Rust DJ, Starke LC. 1973. Pests of protea cut-flowers. Journal of the Entomological Society of Southern Africa. 36:251–255.

N’Dri JK, Hance T, André HM, Lagerlöf J, Tondoh JE. 2016. Microarthropod use as bioindicators of the environmental state: case of soil mites (Acari) from Côte d’Ivoire. Journal of Animal and Plant Sciences. 29:4622–4637.

Ngubane NP, Dreyer LL, Oberlander KC, Roets F. 2018. Two new Sporothrix species from Protea flower heads in South African Grassland and Savanna. Antonie van Leeuwenhoek. 111:965–979. https://doi.org/10.1007/s10482-017-0995-3. DOI: https://doi.org/10.1007/s10482-017-0995-3

Norton RA, Behan-Pelletier VM. 2009. Chapter 15: Suborder Oribatida. In: Krantz G, Walter D (eds), A manual of Acarology. Lubbock: Texas Tech University Press. pp 430–564.

Oliver I, Beattie AJ. 1993. A possible method for the rapid assessment of biodiversity. Conservation Biology. 7:562–568. https://doi.org/10.1046/j.1523-1739.1993.07030562.x. DOI: https://doi.org/10.1046/j.1523-1739.1993.07030562.x

O’Neill KP, Godwin HW, Jiménez-Esquilín AE, Battigelli JP. 2010. Reducing the dimensionality of soil microinvertebrate community datasets using Indicator Species Analysis: Implications for ecosystem monitoring and soil management. Soil Biology and Biochemistry. 42:145–154. https://doi.org/10.1016/j.soilbio.2009.09.024. DOI: https://doi.org/10.1016/j.soilbio.2009.09.024

Osborne JW. 2010. Improving your data transformations: Applying the Box-Cox transformation. Practical Assessment, Research and Evaluation. 15:1–9.

Páll-Gergely B, Krell F-T, Abrahám L, Bajomi B, Balog LE, Boda P, et al. 2024. Identification crisis: a fauna-wide estimate of biodiversity expertise shows massive decline in a Central European country. Biodiversity and Conservation. 33:3871–3903. https://doi.org/10.1007/s10531-024-02934-6. DOI: https://doi.org/10.1007/s10531-024-02934-6

Perfecto I, Vandermeer J, Hanson P, Cartín V. 1997. Arthropod biodiversity loss and the transformation of a tropical agro-ecosystem. Biodiversity and Conservation. 6:935–945. https://doi.org/10.1023/A:1018359429106. DOI: https://doi.org/10.1023/A:1018359429106

Power AG. 2010. Ecosystem services and agriculture: tradeoffs and synergies. Philosophical Transactions of the Royal Society of London B: Biological Sciences. 365:2959–2971. https://doi.org/10.1098/rstb.2010.0143. DOI: https://doi.org/10.1098/rstb.2010.0143

Pryke JS, Roets F, Samways MJ. 2013. Importance of habitat heterogeneity in remnant patches for conserving dung beetles. Biodiversity Conservation. 22:2857–2873. https://doi.org/10.1007/s10531-013-0559-4. DOI: https://doi.org/10.1007/s10531-013-0559-4

Reinten E, Coetzee JH. 2002. Commercialization of South African indigenous crops: aspects of research and cultivation of products. In: Janick J, Whipkey A (eds), Trends in new crops and new uses. Alexandria, VA: ASHS Press.

Reinten EY, Coetzee JH, Van Wyk BE. 2011. The potential of South African indigenous plants for the international cut flower trade. South African Journal of Botany. 77:934–946. https://doi.org/10.1016/j.sajb.2011.09.005. DOI: https://doi.org/10.1016/j.sajb.2011.09.005

Roets F, Crous PW, Wingfield MJ, Dreyer LL. 2009. Mite-mediated hyperphoretic dispersal of Ophiostma spp. from the infructescences of South African Protea spp. Environmental Entomology. 38:143–152. https://doi.org/10.1603/022.038.0118. DOI: https://doi.org/10.1603/022.038.0118

Roets F, De Beer ZW, Dreyer LL, Zipfel R, Crous PW, Wingfield MJ. 2006. Multi-gene phylogeny for Ophiostoma spp. reveals two new species from Protea infructescences. Studies in Mycology. 55:199–212. https://doi.org/10.3114/sim.55.1.199. DOI: https://doi.org/10.3114/sim.55.1.199

Roets F, Theron N, Wingfield MJ, Dreyer LL. 2012. Biotic and abiotic constraints that facilitate host exclusivity of Gondwanamyces and Ophiostoma on Protea. Fungal Biology. 116:49–61. https://doi.org/10.1016/j.funbio.2011.09.008. DOI: https://doi.org/10.1016/j.funbio.2011.09.008

Roets F, Wingfield MJ, Crous PW, Dreyer LL. 2013. Taxonomy and ecology of ophiostomatoid fungi associated with Protea infructescences. In: Seifert KA, De Beer ZW, Wingfield MJ (eds), The Ophiostomatoid Fungi: Expanding Frontiers. In: CBS Biodiversity Series 12. CBS-KNAW Biodiversity Centre, The Netherlands. pp 177–187.

Roets F, Wingfield MJ, Wingfield BD, Dreyer LL. 2011. Mites are the most common vectors of the fungus Gondwanamyces proteae in Protea infructescences. Fungal Biology. 115:343–350. https://doi.org/10.1016/j.funbio.2011.01.005. DOI: https://doi.org/10.1016/j.funbio.2011.01.005

Sabbatini Peverieri G, Simoni S, Goggioli D, Liguori M, Castagnoli M. 2009. Effects of variety and management practices on mite species diversity in Italian vineyards. Bulletin of Insectology. 62: 53–60.

Sasa A, Samways MJ. 2015. Arthropod assemblages associated with wild and cultivated indigenous proteas in the Grabouw area, Cape Floristic Region. African Entomology. 23:19–36. https://doi.org/10.4001/003.023.0130. DOI: https://doi.org/10.4001/003.023.0130

Sayer EJ. 2006. Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems. Biological Reviews. 81:1–31. https://doi.org/10.1017/S1464793105006846. DOI: https://doi.org/10.1017/S1464793105006846

Seniczak A, Seniczak S, GarcÍa-Parra I, Ferragut F, Xamani P, Graczyk R, Messeguer E, Laborda R, Rodrigo E. 2018. Oribatid mites of convential and organic vineyards in the Valencian Community, Spain. Acarologia. 58 (suppl): 119–133. https://doi.org/10.24349/acarologia/20184281. DOI: https://doi.org/10.24349/acarologia/20184281

Slabbert E, Malgas R, Veldtman R, Addison P. 2019. Honeybush (Cyclopia spp.) phenology and associated arthropod diversity in the Overberg region, South Africa. Bothalia. 49:179–191. https://doi:https://doi.org/10.4102/abc.v49i1.2430. DOI: https://doi.org/10.4102/abc.v49i1.2430

Smith Meyer MKP, Craemer C. 1999. Mites (Arachnida: Acari) as crop pests in southern Africa: an overview. African Plant Protection. 5: 37–51.

Swinton SM, Lupi F, Robertson GP, Hamilton SK. 2007. Ecosystem services and agriculture: cultivating agricultural ecosystems for diverse benefits. Ecological Economics. 64:245–252. https://doi.org/10.1016/j.ecolecon.2007.09.020. DOI: https://doi.org/10.1016/j.ecolecon.2007.09.020

Theron-De Bruin N, Dreyer LL, Ueckermann EA, Roets F. 2024. Flower mites steal Protea pollen and nectar. African Entomology. 32:e18064. https://doi.org/10.17159/2254-8854/2024/a18064. DOI: https://doi.org/10.17159/2254-8854/2024/a18064

Theron-De Bruin N, Dreyer LL, Ueckermann EA, Wingfield MJ, Roets F. 2018. Birds Mediate a Fungus-Mite Mutualism. Microbial Ecology. 75:863–874. https://doi.org/10.1007/s00248-017-1093-9. DOI: https://doi.org/10.1007/s00248-017-1093-9

Theron N, Roets F, Dreyer LL, Esler KJ, Ueckermann EA. 2012. A new genus and eight new species of Tydeoidea (Acari: Trombidiformes) from Protea species in South Africa. International Journal of Acarology. 38:257–273. https://doi.org/10.1080/01647954.2011.619576. DOI: https://doi.org/10.1080/01647954.2011.619576

Tomich TP, Brodt S, Ferris H, Galt R, Horwath WR, Kebreab E, Leveau JH, Liptzin D, Lubell M, Merel P, Michelmore R. 2011. Agroecology: a review from a global-change perspective. Annual Review of Environment and Resources. 36:193–222. https://doi.org/10.1146/annurev-environ-012110-121302. DOI: https://doi.org/10.1146/annurev-environ-012110-121302

Tscharntke T, Klein AM, Kruess A, Steffan-Dewenter I, Thies C. 2005. Landscape perspectives on agricultural intensification and biodiversity–ecosystem service management. Ecology Letters. 8:857–874. https://doi.org/10.1111/j.1461-0248.2005.00782.x. DOI: https://doi.org/10.1111/j.1461-0248.2005.00782.x

Tsiafouli MA, Thébault E, Sgardelis SP, Ruiter PC, Putten WH, Birkhofer K, Hemerik L, Vries FT, Bardgett RD, Brady MV, Bjornlund L. 2015. Intensive agriculture reduces soil biodiversity across Europe. Global Change Biology. 21:973–985. https://doi.org/10.1111/gcb.12752. DOI: https://doi.org/10.1111/gcb.12752

Vanolli BS, de Andrade N, Canisares LP, Franco ALC, Pereira APA, Cherubin MR. 2024 Edaphic mesofauna responses to land use change for sugarcane cultivation: insights from contrasting soil textures. Frontiers in Ecology and Evolution. 11:1305115. https://doi.org/10.3389/fevo.2023.1305115. DOI: https://doi.org/10.3389/fevo.2023.1305115

Wezel A, Casagrande M, Celette F, Vian JF, Ferrer A, Peigné J. 2014. Agroecological practices for sustainable agriculture. A review. Agronomy for sustainable development. 34:1–20. https://doi.org/10.1007/s13593-013-0180-7. DOI: https://doi.org/10.1007/s13593-013-0180-7

Witt ABR, Samways MJ. 2004. Influence of agricultural land transformation and pest management practices on the arthropod diversity of a biodiversity hotspot, the Cape Floristic Region, South Africa. African Entomology. 12:89–95.

Wright M. 2003. Insect pests of Proteaceae: assessment of predictions of new pests internationally, and management implications. Acta Horticulturae. 602:167–171. https://doi.org/10.17660/ActaHortic.2003.602.24. DOI: https://doi.org/10.17660/ActaHortic.2003.602.24

Wright MG, Samways MJ. 2000. Biogeography and species richness of endophagous insects associated with Proteaceae in South Africa. African Journal of Ecology. 38:16–22. https://doi.org/10.1046/j.1365-2028.2000.00210.x. DOI: https://doi.org/10.1046/j.1365-2028.2000.00210.x

Wright MG, Saunderson MD. 1995. Protea plant protection: from the African context to the international arena. Acta Horticulturae. 387:129–140. https://doi.org/10.17660/ActaHortic.1995.387.15. DOI: https://doi.org/10.17660/ActaHortic.1995.387.15

Zachariades C, Midgley JJ. 1999. Extrafloral nectaries of South African Proteaceae attract insects but do not reduce herbivory. African Entomology. 7:67–7.

Zhang W, Ricketts TH, Kremen C, Carney K, Swinton, SM. 2007. Ecosystem services and dis-services to agriculture. Ecological Economics. 64:253–260. https://doi.org/10.1016/j.ecolecon.2007.02.024. DOI: https://doi.org/10.1016/j.ecolecon.2007.02.024

Downloads

Additional Files

Published

2025-07-25

How to Cite

1.
Theron-de Bruin N, Dreyer L, Hugo-Coetzee E, Roets F. Effects of indigenous crop cultivation on mite biodiversity in a biodiversity hotspot. Afr. Entomol. [Internet]. 2025 Jul. 25 [cited 2025 Nov. 8];33(1). Available from: https://www.africanentomology.com/article/view/21618