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Bathycoelia distincta is one of the most dominant stink bug pests associated with macadamia orchards in South 
Africa. Understanding the toxicity and sublethal effects of insecticides on this pest is essential for its effective 
management. This study tested four commercial insecticide formulations, consisting of one organophosphate 
(acephate) and three pyrethroids (lambda-cyhalothrin, beta-cyfluthrin and tau-fluvalinate). The toxicity of these 
insecticides and their behavioural effects on mobility were assessed. The sublethal effects of lambda-cyhalothrin on 
the biological parameters of parent B. distincta (F0) and offspring generations (F1) were also determined by treating 
B. distincta adults with sublethal concentrations (LC10 and LC30). In toxicity bioassays, acephate was more toxic to B. 
distincta than lambda-cyhalothrin, beta-cyfluthrin and tau-fluvalinate. Behavioural changes were only observed in 
bugs exposed to pyrethroids, resulting in an increase in the distance walked and decrease of angular velocity. In the 
F0 generation, LC30 reduced the fecundity whereas the LC10 and LC30 accelerated development of the F1 generation. 
These results suggest that pyrethroids may enhance the dispersal of this pest and stimulate the growth of offspring 
populations. Further experiments should be conducted to confirm these results and understand the mechanism of 
action of pyrethroids on B. distincta. 

INTRODUCTION

Stink bugs (Hemiptera: Pentatomidae) are important pests of various fruit and vegetable crops 
(McPherson and McPherson 2000; McPherson 2018). Nymphs and adults primarily feed on the 
reproductive parts of crops including the flowers, seeds, and fruit, although other tissues (e.g., 
roots, stems, leaves) are also fed on. This feeding results in the stunting of plants and dropping 
of bolls and fruit and in some cases results in yield losses (McPherson and McPherson 2000; 
McPherson 2018).

Broad-spectrum insecticides such as organophosphates, pyrethroids and neonicotinoids 
remain the main strategy for controlling populations of stink bugs (Greene et al. 2018; Sosa‐
Gómez et al. 2020). Repeated and long-term use of insecticides against stink bugs can result in the 
development of resistance (Tuelher et al. 2018; Sosa‐Gómez et al. 2020). For example, intensive use 
of pyrethroids and organophosphates on soybean in Brazil reduced the susceptibility of Euschistus 
heros (Fabricius) considerably, which led to increased concentration of active ingredients in the 
formulation of some acephate products (Tuelher et al. 2018; Sosa‐Gómez et al. 2020).

Evaluation of insecticide efficacy should not only measure mortality in pest populations within a 
given time period at lethal concentrations (Desneux et al. 2007; Stark and Banks 2003), but should 
also include examination of sublethal effects. The high mobility of stink bugs can limit their 
exposure to lethal concentrations, but these insecticides may still have important sublethal impacts 
(Lee et al. 2014; Morrison et al. 2017). Furthermore, many active components of chemicals can be 
influenced by factors such as temperature, rainfall, UV light or plant metabolism (Burrows et al. 
2002; Hulbert et al. 2011; Maia et al. 2016), resulting in a degradation of the insecticide into low or 
sublethal concentrations. Measuring sublethal effects in addition to lethal effects of insecticides is 
therefore viewed as a more accurate assessment of insecticide efficacy (Desneux et al. 2007; Haynes 
1988; Müller 2018; Stark and Banks 2003). 

Sublethal concentrations of insecticides can affect many physiological parameters such as 
development, longevity, and fecundity (Zhou et al. 2017; Lu et al. 2020; Wu et al. 2022), as well as 
mobility (da Silva et al. 2022), and feeding behaviour (Koo et al. 2015; Zeng et al. 2016). These effects 
can vary according to the species and the insecticides used. For example, sublethal concentrations 
of dinotefuran can reduce the fecundity of the planthopper Nilaparvata lugens (Stal) (Bao et al. 
2009) whereas no effect was observed on the mirid bug Apolygus lucorum (Meyer-Dur) (Lu et 
al. 2020). In contrast, other studies have shown that sublethal concentrations of insecticides can 
stimulate pest population dynamics (e.g., insecticide-induced hormetic responses) by influencing 
their reproductive output. For example, the insecticides triazophos and deltamethrin stimulate the 
reproductive systems of the adult males of N. lugens, leading to increased fertility in females after 
mating (Wang et al. 2010). A similar effect has been observed with Laodelphax striatellus (Fallen) 
where the fecundity and reproductive rate of females were increased after exposure to a sublethal 
dose of sulfoxaflor (Xu et al. 2016). On aphids, sublethal concentrations of beta-cypermethrin had 
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no significant effect on Aulacorthum solani (Kaltenbach) whereas 
it can stimulate the oviposition of Aphis glycines (Matsumura) 
(Qu et al. 2020). Acceleration of development after exposure to 
sublethal concentrations of insecticides has also been reported 
in various species such as Bemisia tabaci (Gennadius) (Fang et 
al. 2018), Aphis gossypii (Glover) (Koo et al. 2015; Yuan et al. 
2017) and N. lugens (Xu et al. 2022). 

To date, research on the effects of insecticides on stink bugs 
has mainly focused on direct mortality (Sosa‐Gómez et al. 
2020) with few studies characterising sublethal effects. Cira et 
al. (2017) measured the sublethal effects of various insecticides 
on development and feeding of Halyomorpha halys (Stal), 
whereas Morrison et al. (2017) investigated the consequence 
of brief exposure on the survivorship and mobility of this pest. 
Hormetic effects have also been reported in Euschistus heros 
(F.) after exposure to sublethal concentrations of imidacloprid 
(Haddi et al. 2016; Santos et al. 2016).

The two-spotted stink bug, Bathycoelia distincta (Distant) 
is one of the major pests of macadamia in South Africa 
(Schoeman, 2013, 2018; Sonnekus et al. 2022). The damage from 
B. distincta is caused by the insertion of its stylet into the nuts 
for feeding, which can result in premature nut abscission and 
yield loss (Bruwer et al. 2021; Schoeman 2020). Stink bug feeding 
can also result in the deformation of nuts and development of 
lesions on the kernel, which decrease the overall quality of the 
nuts (Bruwer et al. 2021; Schoeman 2020). The use of pyrethroids 
remains the primary strategy for controlling B. distincta despite 
considerable effort in the implementation of integrated pest 
management methods in macadamia orchards in South Africa 
(Schoeman 2014a). Furthermore, macadamia trees can be very 
tall with dense branches which reduces the efficacy of insecticide 
applications (Schoeman 2014b). 

To date, no experimental study has been conducted on the 
lethal and sublethal effects of insecticides on B. distincta. Here, 
we first evaluated the toxicity and effects on the mobility of 
B. distincta with four plant protection products frequently used 
in macadamia orchards, the insecticides acephate, lambda-
cyhalothrin, beta-cyfluthrin and tau-fluvalinate. We then 
focused on lambda-cyhalothrin, the most commonly applied 
insecticide in macadamia orchards, and assessed its acute 
toxicity on adult B. distincta. Finally, the sublethal effects of 
lambda-cyhalothrin on biological parameters of the parent B. 
distincta (F0) and offspring generation (F1) were determined 
with the LC10 and LC30. Our objective was to determine whether 
the population-level performance and behavioural traits of B. 
distincta were influenced by insecticide exposure. The results 
from this study will be useful as a baseline reference point for 
future studies and may lead to improved stink bug management 
strategies for macadamia growers in South Africa.

METHODS

Insects

To test the various commercial products on B. distincta, egg 
masses of B. distincta were collected from a macadamia orchard 
in Limpopo (23°05ʹ34.6” S, 30°14ʹ23.3” E; South Africa), from 
February to April 2022 to start a laboratory colony at the Forestry 
and Agricultural Biotechnology Institute (FABI), Biological 
Control Centre of the University of Pretoria. Eggs were kept 
in small containers until hatching and bugs were subsequently 
transferred to a larger plastic container (27 × 15 cm) with a mesh 
lid for ventilation (approximatively 25 bugs per container). The 
stink bugs used to assess the sublethal effects of the pyrethroid 
lambda-cyhalothrin were initially collected in 2018 from a 
macadamia orchard in Limpopo (23°03ʹ13” S, 30°14ʹ02” E). 
The colony was maintained without any insecticide exposure 
since collection. All the insects used in this experiment were 

maintained in a climate-controlled chamber (25 ± 2 °C, 20 ± 5% 
RH, 14L:10D) and reared on green beans and corn ad libitum.

Time-mortality bioassays under manufacturers 
recommended application rate

Acute (lethal) toxicity was evaluated by direct contact of 
insecticides to the insect body of B. distincta via a glass-vial 
method (De Castro et al. 2018; Snodgrass et al. 2005). The bioassay 
was conducted in 20 ml glass vials treated with 0.5 ml solution 
of each insecticide. All the insecticides used are registered 
for controlling B. distincta in macadamia orchards (SAMAC 
2022). The insecticides used and their respective commercial 
formulations were: the organophosphate acephate (Ace® 
750SP; 750 g a.i.kg–1; Nulandis), and the pyrethroids lambda-
cyhalothrin (Karate Zeon® 10 CS; 100 g a.i.l-1; Syngenta South 
Africa Ltd), beta-cyfluthrin (Buldock® Beta 125 SC; 125 g a.i.l-1; 
Bayer (Pty) Ltd) and tau-fluvalinate (Klartan® 240 EW; 240 
g a.i.l-1; Adama South Africa (Pty) Ltd). The commercial 
formulations were diluted in 1 l of distilled water, achieving the 
following concentration for the bioassays: 75 mg l-1 (acephate), 
5 mg l-1 (lambda-cyhalothrin), 7.5 mg l-1 (beta-cyfluthrin) and 
72 mg l-1 (tau-fluvalinate). The vials were rolled on a hotdog 
roller with the heat unit disconnected in a fume hood until the 
commercial formulations diluted with water had evaporated and 
the insecticide covered the inner vial surface. For the control 
treatment, vials were treated with distilled water only. Insects 
were placed individually into treated vials plugged with cotton 
to prevent escape with no food. Preliminary tests confirmed that 
B. distincta can survive without food or water for time periods 
up to 48 h in the glass vials. 

Twenty B. distincta adults (sex ratio 1:1) were evaluated 
individually for response to each insecticide treatment. The 
insects were kept in a climate-controlled chamber (25 ± 2 °C, 
20 ± 5% RH, L14:D10) and exposure was replicated three times. 
Insect mortality was observed every 2 h during the initial 12 h 
exposure and at 6 h intervals afterwards until death. Bugs were 
recorded as dead if they did not move when probed with a 
paintbrush. 

Concentration-mortality bioassays

Lambda-cyhalothrin toxicity to B. distincta was determined via 
the same method described above. A gradient of concentration of 
lambda-cyhalothrin (99% purity, Sigma-Aldrich, Johannesburg, 
South Africa) was prepared and diluted in acetone (Sigma-
Aldrich, Johannesburg, South Africa). Insects were placed 
individually into treated vials plugged with cotton to prevent 
escape with no food. 

Three replicates of seven concentrations (10 µg/l, 30 µg/l, 75 
µg/l, 100 µg/l, 300 µg/l, 750 µg/l, 1000 µg/l), and a control without 
insecticide were tested, and ten stink bugs per concentration 
were used (sex ratio 1:1, n = 240). The concentrations used 
were established through preliminary bioassays to facilitate 
identification of the concentration range that leads to mortality 
> 0 (between 0 and 50) and < 100 (between 90 and 100). All the 
vials were maintained in a climate-controlled chamber (25 ± 2 
°C, 20 ± 5% RH, L14:D10). Mortality was assessed after 24 and 48 
h of exposure. Insects were considered dead if they did not move 
when probed with a paintbrush.

Behavioural bioassays

Horizontal movement

Bathycoelia distincta movement was analysed using a Petri-dish 
method (Leskey et al. 2012; Morrison et al. 2017). Adults were 
briefly exposed to commercial formulation of insecticides in 
glass-treated vials for 10 min and subsequently transferred into 
an untreated glass Petri dish arena (90 mm diameter × 15 mm 
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high) with a lid to prevent escape. Ten insects (sex ratio 1:1) per 
insecticide were tested per treatment in a complete randomised 
experimental design. Petri dishes were washed after each use 
with soap and water and dried in an oven overnight at 110 °C. 

The horizontal movement of adults was tracked for 10 min 
immediately after insecticide exposure with a Logitech© C922 
Pro HD stream webcam, suspended approximatively 20 cm 
directly above the centre of the arena. All bioassays were 
conducted in a custom-made white box (90 × 100 × 100 cm) 
in a climate-controlled chamber maintained at 25 ± 2 °C and 
20 ± 5% relative humidity. The software EthoVision© XT (version 
16) was used to analyse the videos and to measure the distance 
travelled (cm) and angular velocity (degrees/sec) of the insects 
in the arena. 

Sublethal effects of lambda-cyhalothrin on life-history 
traits of B. distincta

Fifth instar stink bugs were placed on green beans and corn until 
they moulted to adults. These adults were then used in the study 
as the F0 generation individuals to ensure that all stink bugs 
were similar in age prior to exposure to insecticide. The LC10 and 
LC30 obtained from the experiment above were used to evaluate 
the sublethal effect of lambda-cyhalothrin on B. distincta. The 
LC10 and LC30 were chosen to mimic lower concentrations of 
lambda-cyhalothrin that may occur in the field following initial 
insecticide application owing to its degradation by various 
factors. The two concentrations were prepared in acetone 
following the method described above, and acetone was used 
as a control. Adults were exposed via treated glass-vials. After 
48 h, male and female survivors of each treatment were paired 
(1 male and 1 female, 6 pairs per treatment) and transferred to 
small plastic containers (11 × 11 × 15 cm) with food. Every 2 
days, adult mortality and fecundity were recorded. The number 
of eggs were counted until female adult death. The hatched eggs 
were recorded, and the nymphs were transferred into small 
plastic containers. Nymphal stage and survival were checked 
and recorded every 2 days. Finally, when the nymphs reached 
the adult stage, the sex ratio was assessed for each treatment. 
All the experiments were conducted in a climate-controlled 
chamber (25 ± 2 °C, 20 ± 5% RH, 14 L:10 D) and insects were fed 
ad libitum with green beans and corn.

Statistical analyses 

The time-mortality data were subjected to survival analysis 
using the packages survival and survminer (Kassambara and 
Kosinski 2018; Therneau 2015), and the Kaplan-Meier method 
was used followed by a post-hoc test for comparison of survival 
between treatments. Concentration-mortality bioassays were 
subjected to Probit analysis (Finney 1971; Robertson et al. 2007; 
Wheeler et al. 2006) using the ecotox package in R (Hlina 2020). 
Concentration was log-transformed to calculate the lethal 
concentration for 10%, 30% and 50% (LC10, LC30 and LC50) 
of the population after 48 h, as well as their 95% confidence 
limits (CI). No stink bug mortality occurred in the control 
treatment in the toxicity bioassays, so adjustment of treatment 
mortalities was not required (Abbott 1925). The data from the 
behavioural bioassays (distance walked, angular velocity) and 
the sublethal bioassays were tested for normality of residuals 
and homogeneity of variance using a Kolmogorov–Smirnov and 
Bartlett’s test, respectively. When these assumptions were met 
(inspection of residuals and by Bartlett’s test), one-way ANOVA 
was performed, and the means were compared using Tukey’s 
honestly significant difference (HSD) test. If the assumptions 
were violated a Kruskal-Wallis test was performed followed 
by a Dunn post-hoc test to compare the differences between 
treatments using the package FSA (Ogle et al. 2023). Only the 
adult longevity data were analysed with a two-way ANOVA 

(factors: sex and treatment). All data were analysed using R 
(version 4.1.2) and significance was accepted at α = 0.05.

RESULTS

Time-mortality bioassays

The survival analysis of B. distincta exposed to dried insecticide 
residues indicated significant differences among treatments 
(Log-rank test, χ2 = 117, df = 4, p < 0.001) (Figure 1). No mortality 
of B. distincta was observed in the control (without insecticide 
exposure) after 72 h of exposure, while 100% mortality was 
observed for the insecticides acephate, beta-cyfluthrin, 
lambda-cyhalothrin and tau-fluvalinate after 36, 48, and 72 h, 
respectively. Such differences were reflected in the mean survival 
time (LT50) observed for each insecticide. The LT50 were 8 h and 
30 h for the insecticides acephate and beta-cyfluthrin, and 36 h 
for the insecticides lambda-cyhalothrin and tau-fluvalinate. The 
mean survival time was not estimated for stink bugs without 
exposure (control) because no mortality was observed.

Concentration-mortality bioassays

Standard probit analysis of concentration-mortality data 
showed that after 48 h of exposure to lambda-cyhalothrin, the 
LC50 value was estimated at 157 µg/ml (Table 1). The LC10 and 
LC30 values were estimated at 22.8 and 71.2 µg/ml, respectively, 
and were used for the subsequent assessment of sublethal effects. 

Horizontal movement

Effects of exposure to insecticide residues were observed on the 
distance walked immediately after insecticide exposure (Figure 
2A, χ² = 29.70, df = 4, p < 0.001) and post-hoc analyses suggest 
different trends between treatments. After 10 min of insecticide 
exposure, B. distincta adults moved significantly greater distance 
for the three insecticides beta-cyfluthrin, lambda-cyhalothrin and 
tau-fluvalinate than acephate or the control (Dunn’s test, p < 0.05). 
The distance walked by adults exposed to acephate for 10 min was 
not significantly different from the control (Dunn’s test, p > 0.05). 
Effects of exposure to insecticide residues were also observed on 
the angular velocity (Figure 2B, F = 10.48, df = 4, p < 0.001). The 

Figure 1. Survival curves of Bathycoelia distincta exposed to acephate 
(Ace® 750SP; 750 g a.i. kg-1; Nulandis), beta-cyfluthrin (Buldock® Beta 
125 SC; 125 g a.i. l-1; Bayer (Pty) Ltd), lambda-cyhalothrin (Karate Zeon® 
10 CS; 100 g a.i. l-1; Syngenta South Africa Ltd), tau-fluvalinate (Klartan® 
240 EW; 240 g a.i. l-1; Adama South Africa (Pty) Ltd), and water (control). 
The same letters within each parameter indicate that treatments are not 
significantly different from each other at p > 0.05.
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angular velocity significantly decreased for the pyrethroids beta-
cyfluthrin, lambda-cyhalothrin and tau-fluvalinate compared 
to acephate or the control (Tukey HSD, p < 0.05). The angular 
velocity between adults exposed to acephate was not significantly 
different from the control (Tukey HSD, p > 0.05). 

Video recordings showed that movement patterns consisted 
mainly of circular paths along the arena edges, which were 
different from those observed in acephate or control adults 
(Figure 3).

Sublethal effects of lambda-cyhalothrin on the F0 
generation 

Adult B. distincta longevity was significantly affected by 
treatments (F = 10.77, df = 2, p < 0.001) and sex (F = 9.04, df = 
1, p < 0.001) (Figure 4A). LC30 significantly reduced adult male 
longevity when compared with the LC10 and control treatments 
(Figure 4A, Tukey’s HSD tests, α = 0.05). Exposure to sublethal 
concentrations of lambda-cyhalothrin significantly affected the 
fecundity of B. distincta (Figure 4B, F = 8.55, df = 2, p < 0.001). 
The number of eggs produced per female was significantly 
lower when stink bugs were exposed to LC30 (40 ± 24 eggs laid) 
compared to control treatments (170 ± 28 eggs laid) (Tukey HSD, 
α < 0.05). No significant difference was observed in the fecundity 
between the LC10 and LC30 or control treatment (Tukey HSD, 
α > 0.05).  

Sublethal effects of lambda-cyhalothrin on the F1 
generation 

The development duration, hatching rate, survival of nymphs and 
sex ratio of the F1 generation of B. distincta are shown in Figure 
5. Both LC10 and LC30 had no significant effect on the hatching 
rate of eggs (Figure 5A, χ² = 1.93, df = 2, p > 0.05). Sublethal 
concentrations of lambda-cyhalothrin had significant effects on 
the total development time from egg to the adult stage (Figure 
5B, χ² = 31.64, df = 2, p < 0.001). The total developmental time 
from egg to the adult stage was significantly shorter for LC10 and 
LC30 compared to the control treatment (Dunn’s test p < 0.05). 
The LC10 and LC30 significantly decreased the developmental 

duration time at the egg stage (χ² = 22.67, df = 2, p < 0.001) and 
of the 4th (χ² = 23.64, df = 2, p < 0.001) and 5th instar (χ² = 1.514, 
df = 2, p < 0.01) compared to the control treatment (Figure 5C). 
In comparison, the LC30 significantly increased the development 
time of the 3rd instar compared to the control, whereas the LC10 
significantly decreased it compared to the control (χ² = 24.50, 
df = 2, p < 0.001). Nymphal survival was lower during the 2nd 
instar when stink bugs were exposed to LC10 compared to the 
control treatment (Figure 5D, χ² = 6.02, df = 2, p < 0.05). No 
significant difference was observed in the sex ratio of the F1 
generation (determined at the adult stage) between the various 
treatments (Figure 5E, F = 0.59, df = 2, p > 0.05).

DISCUSSION

This study evaluated the toxicity and behavioural effects of four 
commercial insecticides used to control the stink bug pest B. 
distincta in macadamia orchards. The bioassays revealed that the 
organophosphate acephate was more toxic (LT50 = 8 h) than the 
pyrethroids lambda-cyhalothrin (LT50 = 36 h), beta-cyfluthrin 
(LT50 = 30 h) and tau-fluvalinate (LT50 = 36 h) under insecticide 
field rates. In the behavioural bioassays, the pyrethroids induced 
an increase in the distance walked and a decrease of angular 
velocity, suggesting that commercial application of pyrethroids 
might result in a higher dispersal and low mortality. The effects of 
sublethal concentrations (LC10 and LC30) of the active ingredient 
of lambda-cyhalothrin were subsequently assessed on the F0 and 
F1 generation of B. distincta. Knowledge regarding the sublethal 
effects of insecticides is relevant for insect pest management since 
target species are often exposed to sublethal concentrations of 
these compounds for longer periods than lethal concentrations 
due to insecticide degradation. In the F0 generation, the LC30 
significantly reduced male longevity and female fecundity. For 
the F1 generation, sublethal concentrations (LC10 and LC30) of 
lambda-cyhalothrin significantly accelerated the egg stage, and 
the 3rd, 4th and 5th instar developmental time compared to the 
control, resulting in a shorter developmental time.

In our study, toxicity bioassays revealed that B. distincta 
is more tolerant to pyrethroids than organophosphates. The 

Table 1. Estimates of the lethal concentrations of Lambda-cyhalothrin against B. distincta.

LC µg ml-1 LCL-UCL Slope ± SE χ2 df n
LC10 22.8 4.22–48.9

1.53–0.181 10.6 5 240LC30 71.2 27.5–128
LC50 157 82.9–302

SE = standard error, LCL = 95% lower confidence level, UCL = 95% upper confidence level, χ2 = chi-square statistic, df = degrees of freedom, n = total number of bugs used.

Figure 2. Distance walked (A) and angular velocity (B) after 10 min exposure of adults B. distincta to commercial insecticide formulations. The same 
lowercase letters within each parameter indicate that treatments are not significantly different (p > 0.05, Dunn’s and Tukey’s multiple comparisons tests).
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Figure 3. Representative tracks showing the walking pattern of 
B. distincta in petri-dishes after 10 min exposure to various commercial 
insecticide formulations: acephate (Ace® 750SP; 750 g a.i. kg-1; Nulandis), 
beta-cyfluthrin (Buldock® Beta 125 SC; 125 g a.i. l-1; Bayer (Pty) Ltd), lambda-
cyhalothrin (Karate Zeon® 10 CS; 100 g a.i. l-1; Syngenta South Africa Ltd), 
tau-fluvalinate (Klartan® 240 EW; 240 g a.i. l-1; Adama South Africa (Pty) Ltd), 
and control (water).

Figure 4. Effects of sublethal concentrations (LC10 and LC30) of lambda-cyhalothrin on the longevity of adults (A) and the fecundity (B) of the F0 
generation of Bathycoelia distincta. Data are mean ± standard errors (SE), and the same lowercase letters within each parameter indicate that treatments 
are not significantly different (p > 0.05, Tukey’s HSD test).

toxicity of pyrethroids and organophosphate insecticides to the 
Pentatomidae can be variable among species (Blackman et al. 
2015; Cira et al. 2017; Lee, Short, et al. 2014; Leskey et al. 2012; 
Nielsen et al. 2008; Pazini et al. 2019; Snodgrass et al. 2005; 
Tillman and Mullinix 2004). For example, H. halys was able to 
recover after exposure to various pyrethroids (Leskey et al. 2012; 
Nielsen et al. 2008), whereas Tillman and Mullinix (2004) showed 
that E. servus and P. maculiventris from Georgia were not able 
to recover from pyrethroid exposure. In the southeastern United 
States, Euschistus servus was more tolerant to pyrethroid and 
organophosphate insecticide exposures compared to Chinavia 
hilaris (Say), and Nezara viridula (L) (Snodgrass et al. 2005). 
Therefore, the difference in tolerance observed in this study 
could be a B. distincta specific trait, and other species associated 
with macadamia orchards might respond differently. 

The higher tolerance of B. distincta to the commercial 
pyrethroids than the organophosphate could also be linked 
to management practices since the egg masses were collected 
from commercial macadamia orchards. For example, intensive 
and repeated applications of acephate and lambda-cyhalothrin 
linked to the expansion of soybean production in Brazil, reduced 
the susceptibility of E. heros to these insecticides considerably 
(Sosa‐Gómez et al. 2020; Somavilla et al. 2020; Tuelher et al. 
2018). The recommended doses of acephate increased four-
fold in 14 years (Sosa‐Gómez et al. 2020). Similarly, the rapid 
expansion of macadamia-planted areas in South Africa has 
led to the increase of insecticide applications, especially 
pyrethroids, and a decline in the susceptibility in B. distincta 
populations has been suggested (Schoeman 2014a). Although 
this study constitutes the first toxicity assays conducted on B. 
distincta, future research should also evaluate individuals from 
populations with variable exposure histories. 

Changes in locomotory behaviour of B. distincta were 
observed after brief exposure to commercial insecticide 
formulations. These effects are not surprising since neurotoxic 
insecticides were used which can trigger distinct behavioural 
responses (Desneux et al. 2007). In our study, sublethal doses of 
the pyrethroids increased the distance walked and decreased the 
angular velocity of B. distincta movements, while no differences 
were observed between bugs exposed to organophosphate and 
bugs without exposure. Lee et al. (2013) obtained similar results 
where pyrethroid insecticides caused immediate neurotoxicity 
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Figure 5. Effects of sublethal concentrations (LC10 and LC30) of lambda-cyhalothrin on the hatching rate of eggs (A), development duration of nymphs (B), 
total developmental time until adult stage (C), mortality of nymphs (D) and sex ratio (E) of the F1 generation of Bathycoelia distincta. Data are mean ± standard 
errors (SE), and the same lowercase letters within each parameter indicate that treatments are not significantly different from each other at p > 0.05.

on H. halys that resulted in rapid and uncoordinated movement 
compared to organophosphates where the effects were slower. 
Alterations in walking behaviour has been shown to be a 
strategy to overcome the action of insecticides (Haddi et al. 2015; 
Morales et al. 2013) and it is possible that surviving B. distincta 
could disperse from insecticide-contaminated areas, since stink 
bugs are highly mobile (Lee et al. 2014). Thus, further studies 
should test behavioural responses over longer time periods (i.e., 

a few hours) and test whether B. distincta can leave areas treated 
with pyrethroid and organophosphate residues. 

In this study, the two sublethal concentrations (LC10 and LC30) 
of lambda-cyhalothrin did not impact female longevity whereas 
the LC30 decreased male longevity significantly. Similar results 
have been observed in the mirid bug A. lucorum, where the 
authors suggested that the susceptibility to insecticides may be 
correlated to size and weight (Tan et al. 2012). However, Nielsen 
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et al. (2008) tested several insecticides and observed that H. 
halys males were less susceptible to thiamethoxam than females 
despite having smaller body mass. It is therefore unclear if body 
mass could explain the decreased male B. distincta longevity 
after exposure to lambda-cyhalothrin observed in this study. 
Other parameters such as detoxifying enzymes or target-site 
insensitivity may be involved. Previous studies have shown that 
detoxification of insecticides in pentatomids is associated with 
P450 monooxygenases, glutathione-S-transferases, α-esterase, 
and β-esterase enzymes (Bansal and Michel 2018; Boff et al. 2022; 
Mittapelly et al. 2019; Sosa-Gómez et al. 2009; Sosa‐Gómez et al. 
2020; Sparks et al. 2020), and differential expression of P450s 
genes among sexes can occur (Huber et al. 2007; Musasia et al. 
2013; Zuo and Chen 2014). Thus, detoxification mechanisms 
might also occur in B. distincta and enzyme expression levels 
should be investigated in the future.

The fecundity of females exposed to LC30 of lambda-
cyhalothrin was significantly reduced compared to the 
control. Several studies have demonstrated effects of sublethal 
concentrations of insecticides on fecundity (Bao et al. 2009; Wu 
et al. 2022) where females exposed can exhibit compensatory 
effects, resulting in a higher reproductive performance and a 
shorter life span (Vilca Mallqui et al. 2014; Santos et al. 2016). 
This has been demonstrated in female E. heros with sublethal 
concentrations of imidacloprid which increased their fecundity 
and fertility rates but reduced their longevity (Santos et al. 2016). 
In addition, another study showed that sublethal exposure of 
imidacloprid can increase the mating frequency of males and 
induced higher fecundity rates (Haddi et al. 2016). In our study 
no effect was observed on the hatching rate of eggs from exposed 
and nonexposed females. Further studies are required to 
determine if female B. distincta exposed to LC30 were mated or 
not. Female and male reproductive organs and their morphology 
(e.g., testicles, sperm mobility, sperm storage, ovaries, ovarian 
cells, etc.) should also be investigated in the future to determine 
the effects of sublethal exposure of lambda-cyhalothrin on the 
reproductive capacity of B. distincta, in order to explain the 
significant differences in fertility observed in this study. 

Sublethal exposure of the parent generation (F0) to lambda-
cyhalothrin stimulated F1 nymphal development in B. distincta, 
resulting in a shorter total developmental time to the adult stage 
and low overall mortality. Acceleration of development has been 
documented and the effect seems dependent on the insecticide, 
as well as the pest. For example, sublethal concentrations of 
imidacloprid shortened nymphal development in A. gossypii 
(Koo et al. 2015; Yuan et al. 2017) and A. glycines (Qu et al. 2015) 
whereas in other species such as Rhopalosiphum padi (L.) (Li et al. 
2018) or Myzus persicae (Sulzer) (Zeng et al. 2016), the duration 
of nymphal development was extended. Our results suggest that 
a low dose of lambda-cyhalothrin on B. distincta can accelerate 
development in the F1 generation which could increase the 
population size of this pest and likely cause resurgence and 
outbreaks in the field (Cordeiro et al. 2013; Guedes and Cutler 
2014) which may explain the decline of susceptibility in B. 
distincta populations observed previously (Schoeman 2014a).

In this study, various commercial insecticide formulations 
were tested on B. distincta adults and the sublethal effects of 
the active ingredient lambda-cyhalothrin were investigated 
in the F0 and F1 generation of B. distincta. Brief exposure to 
pyrethroids at field application rates stimulated the walking 
behaviour of B. distincta whereas at sublethal concentrations 
the pyrethroid lambda-cyhalothrin accelerated the development 
of offspring. Our results suggest that it is important to consider 
changes in mobility and effects that sublethal concentrations of 
insecticide could have on the development and reproduction of 
the target pest. These behavioural changes should be taken into 
consideration for IPM programmes in macadamia orchards. 

Future experiments should be expanded to greenhouse and 
field conditions to confirm these results and to determine the 
mechanism of action of pyrethroids on B. distincta.
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