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The woodwasp, Sirex noctilio, is a global pest of pines. Although it is known to be attracted to light and possess 
sexually dimorphic body colouration, the visual ecology of S. noctilio is poorly understood. Photoreceptor 
sensitivity of the compound eyes in S. noctilio is not sexually dimorphic. These previous results suggest that 
colour tracking of one sex by the other might not be an important input for mate searching. This study aimed 
to expand our knowledge of the visual system of S. noctilio by means of i) morphological description of the 
compound eyes and ocelli; and ii) semi-field behavioural tests of the colour preference of newly emerged 
wasps. Eye and ocellus morphological features were investigated in 21 males and 21 females. Measurement 
of male and female median ocellus diameter, compound eye surface area, number of ommatidia and facet 
diameter varied from 0.22 to 0.40 mm, 0.589 to 2.277 mm2, 1820 to 4207 and 1.88 × 10–2 to 2.82 × 10–2 mm, 
respectively. In addition, all traits significantly correlated with body size. Male and female wasps emerged from 
infested host material in a flight cage with five traps, each reflecting a different colour. Analysis of trap captures 
did not identify any colour preference, but an effect of trap location was observed with traps in the north-
eastern position capturing more woodwasps, suggesting that other factors, e.g., global landmarks or other 
non-colour visual cues might guide initial flight behaviour of S. noctilio.

INTRODUCTION

The woodwasp, Sirex noctilio (Hymenoptera: Siricidae), is a global pest of pines. It is native to 
Eurasia and has been accidentally introduced in the southern hemisphere (Miller & Clark 1935; 
Gilbert & Miller 1952; Rebuffo et al. 1990; Tribe 1995) and recently in North America (Hoebeke et 
al. 2005) and China (Li et al. 2015). Females use their ovipositor to drill a hole in the bark of pine 
trees and lay eggs, with a phytotoxic mucus and the symbiotic fungus, Amylostereum areolatum 
(Talbot 1977). The combination of these three elements can result in tree mortality when multiple 
attacks occur (Coutts 1969;Bordeaux & Dean 2012). Control programmes based on silvicultural 
practices, surveillance with baited traps, and biological control sometimes provide unsatisfactory 
results and losses still occur (Hurley et al. 2007, 2015; Dodds & de Groot 2012; Slippers et al. 2012; 
Dodds et al. 2014).

Adults of S. noctilio are diurnal, do not feed, and only live for a few days (Neumann & Minko 
1981). During this short time, there is strong selective pressure on the adults to find mates and 
oviposition sites. In insects, sexual dimorphism in olfactory and/or visual traits (e.g. pheromones, 
body shape and colouration) are commonly associated with mate location and attraction. A 
putative male pheromone released from the sexually dimorphic hind legs has been identified in 
S. noctilio (Cooperband et al. 2012; Guignard et al. 2020). However, the addition of the synthetic 
male pheromone to traps baited with a commercial pine kairomone did not increase the number of 
insects captured in the field (Hurley et al. 2015).

The biology of S. noctilio suggests that colour vision could play an important role in reproduction, 
and thus, knowledge of the stimuli involved could be exploited to increase trapping efficiency. 
Various species of Symphyta show colour preferences in choice experiments, where yellow traps 
are generally more attractive than other colours (reviewed in Guignard et al. 2022a, see also 
Anderbrant et al. 1989, Barker et al. 1997, Holuša & Drápela 2006, Taniwaki 2013, Song et al. 2015, 
Vétek et al. 2016). Male and female S. noctilio are sexually dimorphic, females are all black whereas 
males are black with an orange abdomen. Before mating, males form leks in the forest canopy, and 
these leks may be an attractive visual stimulus to females. For example, simulated leks in a field 
experiment increased the number of females captured when no host volatiles were present (Allison 
et al. 2019). A vertical flight distribution experiment in Patagonia demonstrated that males flew 
higher than females, but when males are present females flew higher than when males were not 
present (Martínez et al. 2014). Flight experiments in a large wind-tunnel demonstrated that traps 
baited with ultraviolet (UV) lights capture significantly more S. noctilio than traps without UV 
lights or baited only with a commercial pine kairomone (Sarvary et al. 2015). However, to date no 
studies have tested for colour preferences in S. noctilio.

Recently, it was speculated that colour vision might be less developed in S. noctilio than in other 
hymenopterans (Guignard et al. 2021). The ability to discriminate between colours depends on the 
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number of photoreceptor types in the compound eyes, differing 
in their spectral sensitivity. In hymenopterans, like in most 
other insects, spectral sensitivity is mainly determined by the 
opsins expressed in each photoreceptor. Three common groups 
of opsins exist in insects: long, short and UV opsins, named 
after the wavelengths of light for which they have maximum 
sensitivity (Briscoe & Chittka 2001; Feuda et al. 2016; van der 
Kooi et al. 2021). The vast majority of Apocrita have been shown 
to express one copy of the long, short and UV opsin in their 
compound eyes coding for green, blue and UV wavelength-
sensitive photoreceptors, respectively (Peitsch et al. 1992; van 
der Kooi et al. 2021; Guignard et al. 2022b). In contrast to most 
Apocrita, the short opsin is missing in the genome of S. noctilio, 
and the corresponding blue wavelength-sensitive photoreceptor 
was not found in electroretinogram experiments (Guignard et 
al. 2021). This suggests that S. noctilio might be less sensitive to 
different colours than most Hymenoptera, indicating that colour 
vision may have a limited role in the ecology of this insect.

The goal of the study was to provide detailed information on 
the visual system and visual ecology of S. noctilio. Specifically, we 
aimed to i) characterise morphological traits of the compound 
eyes and ocelli and ii) test whether trap colour had an effect on S. 
noctilio captures in an outdoor cage experiment.

MATERIALS and METHODS

Insects

The collection and rearing protocol of the S. noctilio wasps used 
in this experiment are identical to those described in Guignard 
et al. (2020). In brief, in September 2018 pine logs naturally 
infested with S. noctilio were collected from Knysna, South 
Africa. Logs were transported to and stored in an insectarium 
at 20 °C with ambient relative humidity and a photoperiod of 12 
hours from late October until the following January. Wasps used 
for morphological measurement were caught after eclosion, and 
individually stored in a refrigerator at 12 °C.

Morphological measurements

Morphological measurements of the compound eyes and ocelli 
were made on a total of 21 males and 21 females. The intertegular 
span (ITS) was used as a proxy of body size (Cane 1987; Streinzer 
& Spaethe 2014). Four morphological variables were measured 
for all individuals: diameter of the median ocellus (mm), eye 
surface area (mm2), number of ommatidia and facet diameter 
(mm); as described in Streinzer and Spaethe (2014). In brief, 
ITS and ocelli were measured from digital photographs, taken 
with a stereomicroscope (Leica EZ4D with integrated camera, 
Leica Microsystems, Wetzlar, Germany). Ommatidia number, 
facet lens diameter and eye surface area were measured from eye 
replicas made of nail polish (Forrest 1962; Streinzer & Spaethe 
2014). Ommatidia numbers were determined by manually 
marking all facets of digital photographs of the eye replica in Fiji 
(Schindelin et al. 2012), which were taken by a Canon 6D Mark 
II (Canon, Tokyo, Japan) attached to a Leitz Orthoplan (Leica 
Microsystems). To measure facet lens diameter, we measured 
a row of ten ommatidia in all three axes in the centre of the 
compound eye and calculated the mean facet lens diameter 
(Streinzer & Spaethe 2014). Eye surface area was determined by 
tracing the outline of the eye replica in Fiji.

Behavioural tests

Ten black panel traps were painted with one of 5 different 
colours (i.e., two of each colour). Traps were first painted with 
two layers of undercoat and then with two layers of the test 
colour (black: RAL 9005, blue: RAL 5015, red: RAL 3020, yellow: 
RAL 1018, green: RAL 6037; Figure 2A) on the entire trap and 
bucket. A second set of similarly painted 5 panel traps were 

used for reflectance measurements. All measurements were 
performed following standard protocols (e.g. Chittka & Kevan 
2005). We used a JAZ spectrometer unit equipped with a pulsed 
Xenon light source (Ocean Optics, Dunedin, FL, U.S.A). The 
spectrometer was calibrated against a white standard (WS-1-SL, 
Ocean Optics).

Fourteen infested logs from George (South Africa) were 
stacked by alternating parallel pairs oriented perpendicular to 
each other to make a square log deck pile 1.6 m high, in two 
different walk-in-cages 20 m apart. In each cage, five panel traps, 
one of each colour, were placed at a distance of 1.6 m from the 
centre of the log pile with the bottom of the collecting cup 60 cm 
above the ground. The first trap was placed directly south of the 
log pile (= 180°) and the rest of the traps were placed every 72 
degrees clockwise. In both cages, trap colours were randomly 
placed and then moved daily so that each colour was placed at 
each position for an equal amount of time. Traps were checked 
daily, the collection cups emptied and the number of S. noctilio 
were recorded for 7 weeks. Due to low emergence numbers, 
insects caught in the two cages were pooled together for 
statistical analyses.

Statistical analyses

The ITS between male and female was compared using a Welch 
t-test. Linear regression analyses of the relationship between 
ITS and the four morphological variables measured for both 
sexes were computed after verification of normality for each 
variable (α = 0.05). All models were validated after graphical 
verification of the normality of residuals and homoscedasticity. 
The percentage of insects captured per week was not normally 
distributed and a Kruskal-Wallis test (α = 0.05) was used to 
determine if there were position or treatment effects followed by 
a pairwise Wilcoxon test (Holm correction) post hoc analysis. 
All statistical analyses were performed in Rstudio (v 1.1.383).

RESULTS

Morphological measurements

The ITS was significantly smaller in males (minimum = 
1.57 mm, maximum = 3.80 mm, average = 2.60 ± 0.55 mm) than 
females (minimum = 1.84 mm, maximum = 4.29 mm, average 
= 3.19 ± 0.64 mm) (p-value = 0.0053, t = 2.96, df = 37.98). The 
median ocelli diameter, compound eye surface area, number 
and diameter of ommatidia were all positively correlated with 
the ITS (Figure 1 and Table 1). Inclusion of sex alone or together 
with the ITS in the model did not significantly improve the fit for 
each of the four variables tested (Table 1). Thus, no differences 
between males and females of similar ITS (size) were detected 
for the four morphological variables measured.

The median ocellus diameter was 0.28 ± 0.04 mm (min = 
0.22 mm, max = 0.36 mm) for males and 0.31 ± 0.05 mm (min 
= 0.23 mm, max = 0.40 mm) for females. The compound eye 
surface area was 1.25 ± 0.40 mm2 (min = 0.59 mm2, max = 
2.28 mm2) for males and 1.67 ± 0.52 mm2 (min = 0.67 mm2, 
max = 2.66 mm2) for females. The number of ommatidia was 
estimated to be 2607 ± 466 (min = 1820, max = 3987) for males 
and 3188 ± 560 (min = 2126, max = 4207) for females. The 
estimated ommatidia diameter was 2.28 × 10–2 ± 2.29 × 10–3 mm 
(min = 1.91 × 10–2 mm, max = 2.82 × 10–2 mm) for males and 
2.29 × 10–2 ± 2.17 × 10–3 mm (min = 1.88 × 10–2 mm, max = 
2.78 × 10–2 mm) for females.

Trapping experiment

A total of 51 woodwasps were captured (28 males and 23 females) 
during the 7 weeks. No significant differences were observed 
between captures in traps of the 5 colours (Figure 2B) (H(4) = 
2.62, p = 0.623). However, there was a position effect with trap 
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position four (36 degrees, northeast) capturing significantly 
more woodwasps than the other locations (Figure 2C) (52% ± 
12%, H(4) = 16.59, p = 0.023).

DISCUSSION

This study added new information on S. noctilio eye morphology 
and colour preferences. The results show no sexual dimorphism 
in the visual system but a positive correlation between insect 
size and eye morphology was observed. No preference for any 
of the colours tested was observed; however, relatively few 

wasps emerged from the logs due to a low level of infestation. 
Traps placed at the north-east position of the cage captured 
more individuals than all other positions independent of trap 
colour. We conclude that immediately post-emergence positive 
phototaxis has a stronger impact on S. noctilio orientation 
behaviour than any potential colour preferences.

The compound eyes and ocelli of S. noctilio possess typical 
features of a diurnal visual system and their morphology are 
comparable to typical diurnal bees of similar size (Jander & 
Jander 2002; Kelber & Somanathan 2019). Our study showed 

Table 1. Linear regression analyses of the four dependant variables tested (ocellus diameter, compound eye surface area, number of ommatidia and 
ommatidia diameter) from males (n = 21) and females (n = 21). Males and females were pooled to calculate the mean ± SD. Asterisk indicate a p-value 
< 0.05 of the Student t-test

Dependent variable Average  
(mean ± SD)

Independent  
variable Estimate Standard Error p-value  

(Student t-test) Significance

Ocellus diameter 
(mm)

0.294 ± 0.047

Intercept 0.103414 0.028536 0.00081 *

ITS 0.063346 0.008646 6.6 × 10–9 *

Sex 0.037834 0.037596 0.32032

ITS × sex –0.011583 0.012429 0.35696

Compound eye 
surface area (mm2)

1.46 ± 0.5

Intercept –0.84801 0.14838 1.4 × 10–6 *

ITS 0.78793 0.04566 <2 × 10–16 *

Sex 0.33820 0.20379 0.105

ITS × sex –0.10865 0.06972 0.127

Number of ommatidia 2897.9 ± 588

Intercept 532.25 202.07 0.0121 *

ITS 832.51 62.18 5.78 × 10–16 *

Sex 34.66 277.52 0.9013

ITS × sex –46.49 94.94 0.6272

Diameter of 
ommatidia (mm) 0.0234 ± 0.00228

Intercept 0.01463 0.001656 9.61 × 10–11 *

ITS 0.002921 0.0005097 1.33 × 10–6 *

Sex 0.0008008 0.002275 0.727

ITS × sex –0.00007688 0.0007782 0.922

Figure 1. Intertegular thorax span (ITS) plotted against the ocellus diameter (A), compound eye surface area (B), number of ommatidia (C) and the 
diameter of ommatidia (D) for 21 male (triangles) and 21 females (circles). All variables were positively correlated with the ITS but no difference between 
males and females were found (Table 1). Linear regression results (Multiple R2 and p-value of F-statistic) were combined for males and females and lines 
were added for each variable tested
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that the ocelli diameter, the compound eye surface area, and 
ommatidia number and diameter were positively correlated with 
body size in S. noctilio. Ommatidia number and eye surface area 
can double between small and large S. noctilio. Similar research 
on other hymenopterans demonstrated that larger individuals 
have bigger eyes and possess better visual discrimination (e.g. 
image resolution, low-light sensitivity) than smaller individuals 
(Spaethe & Chittka 2003; Kapustjanskij et al. 2007; Kelber et al. 
2011). In S. noctilio, body length within sex can vary from 9.3 
to 34.9 mm for males and 10.0 to 44.0 mm for females (Ryan & 
Hurley 2012). In addition to putatively better visual acuity, larger 
females in S. noctilio were shown to perform longer and faster 
flights than smaller females (Bruzzone et al. 2009; Gaudon et al. 
2016). The increased eye size and ommatidia number and flight 
capability of larger S. noctilio, likely increase their chances to 
find mates and suitable oviposition sites but empirical support 
does not currently exist. Such variation in eye morphology is not 
common in insects of the same sex or cast making S. noctilio an 
interesting model to study how eye size affects visual acuity in 
insects.

There are no differences between male and female S. noctilio eye 
morphology, opsin expression or spectral sensitivity (Guignard 
et al. 2021). Differences in eye morphology between sexes have 
been observed when the use of visual stimuli differs between 
males and females (Wehrhahn 1979; Meyer-Rochow & Reid 
1994; Hornstein et al. 2000; Lau & Meyer-Rochow 2006; Straw et 
al. 2006; Meyer‐Rochow & Lau 2008; Streinzer & Spaethe 2014; 
Brand et al. 2018). Similarly, differences in spectral sensitivity 
between males and females have been observed in species where 
one sex uses visual signals to attract the other sex (Arikawa et 
al. 2005; Sison-Mangus et al. 2006; Lau et al. 2007; Ogawa et al. 
2013). Although previous studies have observed behavioural 
responses to visual stimuli (Martínez et al. 2014; Sarvary et al. 
2015; Allison et al. 2019), our data suggest that colour vision may 
play a minor role in mate location and recognition in S. noctilio 
compared to achromatic cues or other non-visual stimuli.

The behavioural experiment found no evidence of any colour 
preference in newly emerged wasps. However, a significant 
position effect was observed in the circular trapping arrays with 
approximately five-times more individuals captured in traps 
placed on the north-east side of the array (e.g., 36°). Similar 
results were found when males and females were analysed 
separately, but were poorly supported due to the low number 
of insects, and thus further experiments are needed. A possible 
explanation for this pattern could be higher morning activity. 
Sirex noctilio is known to have strong positive phototaxis 
(Morgan & Stewart 1966; Sarvary et al. 2015; Hurley et al. 2015). 
These results suggest that the position of the sun in the morning 
might be attractive to newly emerged S. noctilio and could 
explain why more insects were captured on the north-eastern 
side of the cage. These results agree with earlier reports that 
S. noctilio concentrate on the eastern side of emergence cages, 
are most active in the morning, and that mating occurs in the 
morning (Dolezal 1967). However, other factors (e.g., prevailing 
wind direction) may explain the observed position effect.

In summary, Sirex noctilio possesses typical apposition eyes 
and no sexual dimorphism in eye morphology. In contrast 
to what has been observed in most Symphyta, no colour 
preferences were recorded. However, it is unclear why the north-
eastern position captured significantly more individuals, but 
this might be due to positive phototaxis to the morning sun. 
Thus, the morphology, physiology and behaviour of S. noctilio 
do not indicate a strong role of colour vision in the biology of 
S. noctilio. Further studies on the use of achromatic cues such 
as brightness contrast or light intensity should be conducted to 
better understand the visual ecology of S. noctilio.
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